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0 Introduction

This document is based on the BBOB 2009 function document [1]. In the following, 24 noise-free
real-parameter single-objective benchmark functions are presented.1 Our intention behind the
selection of benchmark functions was to evaluate the performance of algorithms with regard to
typical difficulties which we believe occur in continuous domain search. We hope that the function
collection reflects, at least to a certain extend and with a few exceptions, a more difficult portion
of the problem distribution that will be seen in practice (easy functions are evidently of lesser
interest).

We prefer benchmark functions that are comprehensible such that algorithm behaviours can
be understood in the topological context. In this way, a desired search behaviour can be pictured
and deficiencies of algorithms can be profoundly analysed. Last but not least, this can eventually
lead to a systematic improvement of algorithms.

All benchmark functions are scalable with the dimension. Most functions have no specific value
of their optimal solution (they are randomly shifted in x-space). All functions have an artificially
chosen optimal function value (they are randomly shifted in f -space). Consequently, for each
function different instances can be generated: for each instance the randomly chosen values are
drawn anew2. Apart from the first subgroup, the benchmarks are non-separable. Other specific
properties are discussed in the appendix.

0.1 General Setup

Search Space All functions are defined and can be evaluated over RD, while the actual search
domain is given as [−5, 5]D.

Location of the optimal xopt and of fopt = f(xopt) All functions have their global optimum
in [−5, 5]D. The majority of functions has the global optimum in [−4, 4]D and for many of them
xopt is drawn uniformly from this compact. The value for fopt is drawn from a Cauchy distributed
random variable, with zero median and with roughly 50% of the values between -100 and 100.
The value is rounded after two decimal places and set to ±1000 if its absolute value exceeds 1000.

1For our experimental setup see [4, 5] and for our performance assessment methodology see [3].
2The implementation provides an instance ID as input, such that a set of uniquely specified instances can be

explicitly chosen.
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Figure 1: Tosz (blue) and D-th coordinate of Tasy for β = 0.1, 0.2, 0.5 (green)

In the function definitions a transformed variable vector z is often used instead of the argument
x. The vector z has its optimum in zopt = 0, if not stated otherwise.

Boundary Handling On some functions a penalty boundary handling is applied as given with
fpen (see next section).

Linear Transformations Linear transformations of the search space are applied to derive non-
separable functions from separable ones and to control the conditioning of the function.

Non-Linear Transformations and Symmetry Breaking In order to make relatively sim-
ple, but well understood functions less regular, on some functions non-linear transformations are
applied in x- or f -space. Both transformations Tosz : Rn → Rn, n ∈ {1, D}, and Tasy : RD → RD
are defined coordinate-wise (see below). They are smooth and have, coordinate-wise, a strictly
positive derivative. They are shown in Figure 1. Tosz is oscillating about the identity, where the
oscillation is scale invariant w.r.t. the origin. Tasy is the identity for negative values. When Tasy
is applied, a portion of 1/2D of the search space remains untransformed.

0.2 Symbols and Definitions

Used symbols and definitions of, e.g., auxiliary functions are given in the following. Vectors are
typeset in bold and refer to column vectors.

⊗ indicates element-wise multiplication of twoD-dimensional vectors, ⊗ : RD×RD → RD, (x,y) 7→
diag(x)× y = (xi × yi)i=1,...,D

‖.‖ denotes the Euclidean norm, ‖x‖2 =
∑
i x

2
i .
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[.] denotes the nearest integer value

0 = (0, . . . , 0)T all zero vector

1 = (1, . . . , 1)T all one vector

Λα is a diagonal matrix in D dimensions with the ith diagonal element as λii = α
1
2

i−1
D−1 , for

i = 1, . . . , D.

fpen : RD → R, x 7→
∑D
i=1 max(0, |xi| − 5)2

1+
− a D-dimensional vector with entries of −1 or 1 with equal probability independently drawn.

Q, R orthogonal (rotation) matrices. For one function in one dimension a different realization for
respectively Q and R is used for each instantiation of the function. Orthogonal matrices are
generated from standard normally distributed entries by Gram-Schmidt orthonormalization.
Columns and rows of an orthogonal matrix form an orthonormal basis.

R see Q

T βasy : RD → RD, xi 7→

{
x
1+β i−1

D−1

√
xi

i if xi > 0

xi otherwise
, for i = 1, . . . , D. See Figure 1.

Tosz : Rn → Rn, for any positive integer n (n = 1 and n = D are used in the following), maps
element-wise

x 7→ sign(x) exp (x̂+ 0.049 (sin(c1x̂) + sin(c2x̂)))

with x̂ =

{
log(|x|) if x 6= 0

0 otherwise
, sign(x) =


−1 if x < 0

0 if x = 0

1 otherwise

, c1 =

{
10 if x > 0

5.5 otherwise
and

c2 =

{
7.9 if x > 0

3.1 otherwise
. See Figure 1.

xopt optimal solution vector, such that f(xopt) is minimal.

0.3 Figures

The benchmark function definitions in the next section are accompanied with a number of figures.

1. a (3-D) surface plot, where D = 2

2. a contour plot, where D = 2

3. two projected contour plots, where D = 20. Plotted are, starting from the optimum xopt,
first versus second variable (left) and first versus fifth variable (right).

4. sections (f versus x) through the global optimum along the first variable x1, the second
variable x2, and the all-ones vector. The sections for different dimensions appear

(a) in a non-log plot (above), where the maximum f -value is normalized to one for each
single graph.

(b) in a semi-log plot (middle row)

(c) in a log-log plot (below) starting close to the global optimum along x1, −x1, x2, −x2,
1, and −1.
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1 Separable functions

1.1 Sphere Function

f1(x) = ‖z‖2 + fopt (1)

• z = x− xopt

Properties Presumably the most easy continuous domain search problem, given the volume of
the searched solution is small (i.e. where pure monte-carlo random search is too expensive).

• unimodal

• highly symmetric, in particular rotationally invariant, scale invariant

Information gained from this function:

• What is the optimal convergence rate of an algorithm?
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1.2 Ellipsoidal Function

f2(x) =

D∑
i=1

106
i−1
D−1 z2i + fopt (2)

• z = Tosz(x− xopt)

Properties Globally quadratic and ill-conditioned function with smooth local irregularities.

• unimodal

• conditioning is about 106

Information gained from this function:

• In comparison to f10: Is separability exploited?
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1.3 Rastrigin Function

f3(x) = 10

(
D −

D∑
i=1

cos(2πzi)

)
+ ‖z‖2 + fopt (3)

• z = Λ10T 0.2
asy(Tosz(x− xopt))

Properties Highly multimodal function with a comparatively regular structure for the place-
ment of the optima. The transformations Tasy and Tosz alleviate the symmetry and regularity of
the original Rastrigin function

• roughly 10D local optima

• conditioning is about 10

Information gained from this function:

• In comparison to f15: Is separability exploited?
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1.4 Büche-Rastrigin Function

f4(x) = 10

(
D −

D∑
i=1

cos(2πzi)

)
+

D∑
i=1

z2i + 100 fpen(x) + fopt (4)

• zi = si Tosz(xi − xopti ) for i = 1 . . . D

• si =

{
10× 10

1
2

i−1
D−1 if zi > 0 and i = 1, 3, 5, . . .

10
1
2

i−1
D−1 otherwise

for i = 1, . . . , D

Properties Highly multimodal function with a structured but highly asymmetric placement of
the optima. Constructed as a deceptive function for symmetrically distributed search operators.

• roughly 10D local optima, conditioning is about 10, skew factor is about 10 in x-space and
100 in f -space

Information gained from this function:

• In comparison to f3: What is the effect of asymmetry?
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1.5 Linear Slope

f5(x) =

D∑
i=1

5 |si| − sizi + fopt (5)

• zi = xi if xopti xi < 52 and zi = xopti otherwise, for i = 1, . . . , D. That is, if xi exceeds xopti it
will mapped back into the domain and the function appears to be constant in this direction.

• si = sign
(
xopti

)
10

i−1
D−1 for i = 1, . . . , D.

• xopt = zopt = 5× 1+
−

Properties Purely linear function testing whether the search can go outside the initial convex
hull of solutions right into the domain boundary.

• xopt is on the domain boundary

Information gained from this function:

• Can the search go outside the initial convex hull of solutions into the domain boundary?
Can the step size be increased accordingly?
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2 Functions with low or moderate conditioning

2.6 Attractive Sector Function

f6(x) = Tosz

(
D∑
i=1

(sizi)
2

)0.9

+ fopt (6)

• z = QΛ10R(x− xopt)

• si =

{
102 if zi × xopti > 0

1 otherwise

Properties Highly asymmetric function, where only one “hypercone” (with angular base area)
with a volume of roughly 1/2D yields low function values. The optimum is located at the tip of
this cone.

• unimodal

Information gained from this function:

• In comparison to f1: What is the effect of a highly asymmetric landscape?

30



31



32



33



34



2.7 Step Ellipsoidal Function

f7(x) = 0.1 max

(
|ẑ1|/104,

D∑
i=1

102
i−1
D−1 z2i

)
+ fpen(x) + fopt (7)

• ẑ = Λ10R(x− xopt)

• z̃i =

{
b0.5 + ẑic if [ẑi −→] |ẑi| > 0.5

b0.5 + 10 ẑic/10 otherwise
for i = 1, . . . , D,

denotes the rounding procedure in order to produce the plateaus.

• z = Qz̃

Properties The function consists of many plateaus of different sizes. Apart from a small area
close to the global optimum, the gradient is zero almost everywhere.

• unimodal, non-separable, conditioning is about 100

Information gained from this function:

• Does the search get stuck on plateaus?
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2.8 Rosenbrock Function, original

f8(x) =

D−1∑
i=1

(
100

(
z2i − zi+1

)2
+ (zi − 1)2

)
+ fopt (8)

• z = max
(

1,
√
D
8

)
(x− xopt) + 1

• zopt = 1

Properties So-called banana function due to its 2-D contour lines as a bent ridge (or valley) [8].
In the beginning, the prominent first term of the function definition attracts to the point z = 0.
Then, a long bending valley needs to be followed to reach the global optimum. The ridge changes
its orientation D − 1 times. Exceptionally, here xopt ∈ [−3, 3]D.

• tri-band dependency structure, in larger dimensions the function has a local optimum with
an attraction volume of about 25%

Information gained from this function:

• Can the search follow a long path with D − 1 changes in the direction?
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2.9 Rosenbrock Function, rotated

f9(x) =

D−1∑
i=1

(
100

(
z2i − zi+1

)2
+ (zi − 1)2

)
+ fopt (9)

• z = max
(

1,
√
D
8

)
Rx + 1/2

• zopt = 1

Properties rotated version of the previously defined Rosenbrock function.
Information gained from this function:

• In comparison to f8: Can the search follow a long path with D − 1 changes in the direction
without exploiting partial separability?
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3 Functions with high conditioning and unimodal

3.10 Ellipsoidal Function

f10(x) =

D∑
i=1

106
i−1
D−1 z2i + fopt (10)

• z = Tosz(R(x− xopt))

Properties Globally quadratic ill-conditioned function with smooth local irregularities, non-
separable counterpart to f2.

• unimodal, conditioning is 106

Information gained from this function:

• In comparison to f2: What is the effect of rotation (non-separability)?

Note: The 3d plot shows only a part of the complete function in the vicinity of the optimum.
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3.11 Discus Function

f11(x) = 106z21 +

D∑
i=2

z2i + fopt (11)

• z = Tosz(R(x− xopt))

Properties Globally quadratic function with local irregularities. A single direction in search
space is a thousand times more sensitive than all others.

• conditioning is about 106

Information gained from this function:

• In comparison to f1: What is the effect of constraint-like penalization?

Note: The 3d plot shows only a part of the complete function in the vicinity of the optimum.
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3.12 Bent Cigar Function

f12(x) = z21 + 106
D∑
i=2

z2i + fopt (12)

• z = RT 0.5
asy(R(x− xopt))

Properties A ridge defined as
∑D
i=2 z

2
i = 0 needs to be followed. The ridge is smooth but very

narrow. Due to T
1/2
asy the overall shape deviates remarkably from being quadratic.

• conditioning is about 106, rotated, unimodal

Information gained from this function:

• Can the search continuously change its search direction?

Note: The 3d plot shows only a part of the complete function in the vicinity of the optimum.
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3.13 Sharp Ridge Function

f13(x) = z21 + 100

√√√√ D∑
i=2

z2i + fopt (13)

• z = QΛ10R(x− xopt)

Properties As for the Bent Cigar function, a ridge defined as
∑D
i=2 z

2
i = 0 must be followed.

The ridge is non-differentiable and the gradient is constant when the ridge is approached from any
given point. Following the gradient becomes ineffective close to the ridge where the ridge needs
to be followed in z1-direction to its optimum. The necessary change in “search behavior” close to
the ridge is difficult to diagnose, because the gradient towards the ridge does not flatten out.

Information gained from this function:

• In comparison to f12: What is the effect of non-smoothness, non-differentiabale ridge?
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3.14 Different Powers Function

f14(x) =

√√√√ D∑
i=1

|zi|2+4 i−1
D−1 + fopt (14)

• z = R(x− xopt)

Properties Due to the different exponents the sensitivies of the zi-variables become more and
more different when approaching the optimum.
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4 Multi-modal functions with adequate global structure

4.15 Rastrigin Function

f15(x) = 10

(
D −

D∑
i=1

cos(2πzi)

)
+ ‖z‖2 + fopt (15)

• z = RΛ10QT 0.2
asy(Tosz(R(x− xopt)))

Properties Prototypical highly multimodal function which has originally a very regular and
symmetric structure for the placement of the optima. The transformations Tasy and Tosz alleviate
the symmetry and regularity of the original Rastrigin function.

• non-separable less regular counterpart of f3

• roughly 10D local optima

• conditioning is about 10

Information gained from this function:

• in comparison to f3: What is the effect of non-separability for a highly multimodal function?
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4.16 Weierstrass Function

f16(x) = 10

(
1

D

D∑
i=1

11∑
k=0

1/2k cos(2π3k(zi + 1/2))− f0

)3

+
10

D
fpen(x) + fopt (16)

• z = RΛ1/100QTosz(R(x− xopt))

• f0 =
∑11
k=0 1/2k cos(2π3k1/2)

Properties Highly rugged and moderately repetitive landscape, where the global optimum is
not unique.

• the term
∑
k 1/2k cos(2π3k . . . ) introduces the ruggedness, where lower frequencies have a

larger weight 1/2k.

• rotated, locally irregular, non-unique global optimum

Information gained from this function:

• in comparison to f17: Does ruggedness or a repetitive landscape deter the search behavior?
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4.17 Schaffers F7 Function

f17(x) =

(
1

D − 1

D−1∑
i=1

√
si +

√
si sin2

(
50 s

1/5
i

))2

+ 10 fpen(x) + fopt (17)

• z = Λ10QT 0.5
asy(R(x− xopt))

• si =
√
z2i + z2i+1 for i = 1, . . . , D

Properties A highly multimodal function where frequency and amplitude of the modulation
vary.

• asymmetric, rotated

• conditioning is low
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4.18 Schaffers F7 Function, moderately ill-conditioned

f18(x) =

(
1

D − 1

D−1∑
i=1

√
si +

√
si sin2

(
50 s

1/5
i

))2

+ 10 fpen(x) + fopt (18)

• z = Λ1000QT 0.5
asy(R(x− xopt))

• si =
√
z2i + z2i+1 for i = 1, . . . , D

Properties Moderately ill-conditioned counterpart to f17

• conditioning of about 1000

Information gained from this function:

• In comparison to f17: What is the effect of ill-conditioning?
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4.19 Composite Griewank-Rosenbrock Function F8F2

f19(x) =
10

D − 1

D−1∑
i=1

( si
4000

− cos(si)
)

+ 10 + fopt (19)

• z = max
(

1,
√
D
8

)
Rx + 0.5

• si = 100 (z2i − zi+1)2 + (zi − 1)2 for i = 1, . . . , D

• zopt = 1

Properties Resembling the Rosenbrock function in a highly multimodal way.
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5 Multi-modal functions with weak global structure

5.20 Schwefel Function

f20(x) = − 1

100D

D∑
i=1

zi sin(
√
|zi|) + 4.189828872724339 + 100fpen(z/100) + fopt (20)

• x̂ = 2× 1+
− ⊗ x

• ẑ1 = x̂1, ẑi+1 = x̂i+1 + 0.25
(
x̂i − [xopti −→] 2

∣∣xopti

∣∣) for i = 1, . . . , D − 1

• z = 100 (Λ10(ẑ− [xopt −→] 2 |xopt|) + [xopt −→] 2 |xopt|)

• xopt = 4.2096874633/2 1+
−, where 1+

− is the same realization as above

Properties The most prominent 2D minima are located comparatively close to the corners of
the unpenalized search area, based on [9].

• the penalization is essential, as otherwise more and better minima occur further away from
the search space origin
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5.21 Gallagher’s Gaussian 101-me Peaks Function

f21(x) = Tosz

(
10− 101

max
i=1

wi exp

(
− 1

2D
(x− yi)

TRTCiR(x− yi)

))2

+ fpen(x) + fopt (21)

• wi =

1.1 + 8× i− 2

99
for i = 2, . . . , 101

10 for i = 1
, three optima have a value larger than 9

• Ci = Λαi/α
1/4
i where Λαi is defined as usual (see Section 0.2), but with randomly per-

muted diagonal elements. For i = 2, . . . , 101, αi is drawn uniformly randomly from the set{
10002

j
99 | j = 0, . . . , 99

}
without replacement, and αi = 1000 for i = 1.

• the local optima yi are uniformly drawn from the domain [[−4.9, 4.9]D −→] [−5, 5]D for
i = 2, . . . , 101 and y1 ∈ [−4, 4]D. The global optimum is at xopt = y1.

Properties The function consists of 101 optima with position and height being unrelated and
randomly chosen (different for each instantiation of the function), based on [2].

• the conditioning around the global optimum is about 30

Information gained from this function:

• Is the search effective without any global structure?
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5.22 Gallagher’s Gaussian 21-hi Peaks Function

f22(x) = Tosz

(
10− 21

max
i=1

wi exp

(
− 1

2D
(x− yi)

TRTCiR(x− yi)

))2

+ fpen(x) + fopt (22)

• wi =

1.1 + 8× i− 2

19
for i = 2, . . . , 21

10 for i = 1
, two optima have a value larger than 9

• Ci = Λαi/α
1/4
i where Λαi is defined as usual (see Section 0.2), but with randomly per-

muted diagonal elements. For i = 2, . . . , 21, αi is drawn uniformly randomly from the set{
10002

j
19 | j = 0, . . . , 19

}
without replacement, and αi = 10002 for i = 1.

• the local optima yi are uniformly drawn from the domain [−4.9, 4.9]D for i = 2, . . . , 21 and
y1 ∈[[−4, 4]D −→] [−3.92, 3.92]D]. The global optimum is at xopt = y1.

Properties The function consists of 21 optima with position and height being unrelated and
randomly chosen (different for each instantiation of the function), based on [2].
• the conditioning around the global optimum is about 1000

Information gained from this function:

• In comparison to f21: What is the effect of higher condition?
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5.23 Katsuura Function

f23(x) =
10

D2

D∏
i=1

1 + i

32∑
j=1

∣∣2jzi − [2jzi]
∣∣

2j

10/D1.2

− 10

D2
+ fpen(x)+fopt (23)

• z = QΛ100R(x− xopt)

Properties Highly rugged and highly repetitive function with more than 10D global optima,
based on the idea in [6].
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5.24 Lunacek bi-Rastrigin Function

f24(x) = min

(
D∑
i=1

(x̂i − µ0)2, dD + s

D∑
i=1

(x̂i − µ1)2

)
+10

(
D −

D∑
i=1

cos(2πzi)

)
+104 fpen(x)+fopt

(24)

• x̂ = 2 sign(xopt)⊗ x, xopt = [µ0 −→] µ0

2 1+
−

• z = QΛ100R(x̂− µ0 1)

• µ0 = 2.5, µ1 = −
√
µ2
0 − d
s

, s = 1− 1

2
√
D + 20− 8.2

, d = 1

Properties Highly multimodal function based on [7] with two funnels around [µ01
+
− −→] µ0

2 1+
−

and [−µ11
+
− −→] µ1

2 1+
− being superimposed by the cosine. Presumably different approaches need

to be used for “selecting the funnel” and for search the highly multimodal function “within”
the funnel. The function was constructed to be deceptive for evolutionary algorithms with large
population size.

• the funnel of the local optimum at [−µ11
+
−] µ1

2 1+
− has roughly 70% of the search space volume

within [−5, 5]D.

Information gained from this function: Can the search behavior be local on the global scale
but global on a local scale?
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APPENDIX

A Function Properties

A.1 Deceptive Functions

All “deceptive” functions provide, beyond their deceptivity, a “structure” that can be exploited
to solve them in a reasonable procedure.

A.2 Ill-Conditioning

Ill-conditioning is a typical challenge in real-parameter optimization and, besides multimodality,
probably the most common one. Conditioning of a function can be rigorously formalized in the
case of convex quadratic functions, f(x) = 1

2x
THx where H is a symmetric definite positive

matrix, as the condition number of the Hessian matrix H. Since contour lines associated to a
convex quadratic function are ellipsoids, the condition number corresponds to the square root of
the ratio between the largest axis of the ellipsoid and the shortest axis. For more general functions,
conditioning loosely refers to the square of the ratio between the largest direction and smallest of
a contour line. The testbed contains ill-conditioned functions with a typical conditioning of 106.
We believe this a realistic requirement, while we have seen practical problems with conditioning
as large as 1010.

A.3 Regularity

Functions from simple formulas are often highly regular. We have used a non-linear transformation,
Tosz, in order to introduce small, smooth but clearly visible irregularities. Furthermore, the testbed
contains a few highly irregular functions.

A.4 Separability

In general, separable functions pose an essentially different search problem to solve, because the
search process can be reduced to D one-dimensional search procedures. Consequently, non-
separable problems must be considered much more difficult and most benchmark functions are
designed being non-separable. The typical well-established technique to generate non-separable
functions from separable ones is the application of a rotation matrix R.

A.5 Symmetry

Stochastic search procedures often rely on Gaussian distributions to generate new solutions and it
has been argued that symmetric benchmark functions could be in favor of these operators. To avoid
a bias in favor of highly symmetric operators we have used a symmetry breaking transformation,
Tasy. We have also included some highly asymmetric functions.

A.6 Target function value to reach

The typical target function value for all functions is fopt + 10−8. On many functions a value of
fopt + 1 is not very difficult to reach, but the difficulty versus function value is not uniform for all
functions. These properties are not intrinsic, that is fopt + 10−8 is not intrinsically “very good”.
The value mainly reflects a scalar multiplier in the function definition.
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