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Abstract—This paper presents a parameter tuning study of
Differential Evolution (DE) algorithms, including both standard
DE as well as variants of the state-of-the-art adaptive DE,
SHADE for both cheap and expensive optimization scenarios.
Using the algorithm configuration tool SMAC, the DE variants
are tuned independently for three different scenarios: expensive
(102 × D evaluations), medium (104 × D evaluations), cheap
(105 × D evaluations), where D is the benchmark problem
dimensionality. Each of these tuned parameter settings is then
tested under both cheap and expensive scenarios, which enables
us to analyze the effect of both the tuning and test scenario on
the performance of the tuned algorithm. We evaluate restarting
variants of DE (R-DE), as well as restarting variants of SHADE
(R-SHADE) and L-SHADE (RL-SHADE). For the parameter
tuning phase, we use the CEC2014 benchmarks as training
problems, and for the testing phase, we use all 24 problems from
the BBOB benchmark set. We also compare these DE variants
with state-of-the-art restart CMA-ES variants (HCMA, BIPOP-
CMA-ES, and IPOP-CMA-ES). For both cheap and expensive
scenarios, DE algorithms perform very well for low-dimensional
problems. In particular, for the expensive scenario, the simple,
restarting DE (R-DE) performs quite well, and on the cheap
scenario, RL-SHADE performs well.

I. INTRODUCTION

In the Evolutionary Computation (EC) community, empiri-

cal studies of Evolutionary Algorithms (EAs) have tended to

be based on a relatively large budget of fitness evaluations.

For example, Yao’s 13 classical benchmarks [1] prescribe

1.5×104 ∼ 2.0×106 evaluations for 30-dimensional problems,

the CEC2005/2014 benchmarks [2], [3] use 10
4 ×D evalua-

tions (where D is the dimensionality of the problem), and the

SOCO benchmarks [4] use 5,000 ×D evaluations. However,

some real-world applications of EAs require executing very

expensive simulations (up to 10 minutes/run) in order to

evaluate the fitness of a single individual [5].

Thus, in recent years, there has been much research on

such expensive optimization problems in the EC community.

In contrast to traditional benchmark settings, evaluating the

fitness of thousands or hundreds of individuals is infeasible for

problems – 1,000 or so evaluations is a more realistic limit on

the number of fitness evaluations. The standard approach for

such expensive optimization problems use surrogate models,

in which a (fast) proxy model for the expensive optimization

function is learned and used instead of the actual fitness

function [5]. In this surrogate approach, the number of “fitness

evaluations” performed by the evolutionary algorithms is quite

large (e.g., 10
4 – 10

5), but most of these evaluations are

performed using the surrogate function, and only a small

number (e.g., < 1,000) of calls to the actual fitness function

are made.

It is widely known that in general, the performance of an

EA depends on its control parameter settings, and there is a

large body of work related to parameter tuning [6]. However,

most of the previous work is based on cheap scenarios

using at least tens of thousands of fitness evaluations, and

there has been relatively little work on parameter tuning for

expensive scenarios. Cáceres et al have recently shown that

when ACO is tuned specifically for expensive scenarios, the

tuned parameters significantly differ from standard control

parameter values, and are much more “greedy” than standard

values [7]. Liao et al have tuned IPOP-CMA-ES [8] for

expensive scenarios [9] and standard (cheap) scenarios [10]

separately. Although it is not explicitly pointed out by Liao

et al, the population size, and initial step size of IPOP-CMA-

ES obtained by tuning for expensive scenarios is significantly

smaller (greedier) than those for the standard cheap scenario.

Thus, control parameters that are appropriate for standard,

cheap scenarios are not necessarily appropriate for expensive

scenarios, and it is necessary to tune parameters depending on

the computational budget.

In this paper, we present a parameter tuning study for

variants of Differential Evolution (DE) [11]. By performing

tuning for several different computational budgets, including

expensive optimization scenarios, we investigate the effect

of the budget used during training on the tuned parameters.

DE is an EA that was primarily designed for real parameter

optimization problems [11]. Despite its relative simplicity, DE

has been shown to be competitive with more complex opti-

mization algorithms, and has been applied to many practical

problems [12]. As with other EAs, the performance of DE is

greatly affected by its control parameters, so there have been

numerous, previous parameter studies of DE [11], [13], [14].

Furthermore, many adaptive variants of DE that adapt their

control parameter settings while solving a problem have been

investigated [15], [16], [17].

However, to our knowledge, there have been no previous,

thorough studies of DE that includes expensive scenarios.

For example, the widely cited parameter studies of DE by

Gämperle et al [13] and Montes et al [14] use a budget of

1.5 × 105, 4.0 × 105 evaluations for 2 ∼ 20 dimensions, and

1.2 × 105 evaluations for 30 dimensions, respectively. Thus,

there is need for a parameter study which includes expensive

scenarios that are an important class of problems in practice.



// Initialization phase

1 G = 1, NG = N
init , Archive A = ∅;

2 Initialize population PG = (x1,G, ...,xN,G) randomly;
3 Set all values in MCR, MF to 0.5 and k = 1;
// Main loop

4 while The termination criteria are not met do

5 SCR = ∅, SF = ∅;
6 for i = 1 to N do

7 ri = Select from [1,H] randomly;
8 If MCR,ri = �, CRi,G = 0. Otherwise

CRi,G = randni(MCR,ri ,0.1);
9 Fi,G = randci(MF,ri ,0.1);

10 Generate trial vector ui,G according to
current-to-pbest/1/bin;

11 for i = 1 to N do
12 if f(ui,G) < f(xi,G) then

13 xi,G →A, CRi,G → SCR, Fi,G → SF ;
14 xi,G+1 = ui,G;

15 else
16 xi,G+1 = xi,G;

17 If necessary, delete randomly selected individuals from the
archive such that the archive size is ∣A∣.

18 Update memories MCR and MF (Algorithm 2);
19 G = G + 1;

Algorithm 1: SHADE algorithm

Using the CEC2014 benchmarks [3] as the training data, we

apply the algorithm configuration tool SMAC [18] in order to

tune the parameters for standard DE, as well as several variants

of SHADE [16], [17], a state-of-the-art adaptive DE algorithm,

under 3 different scenarios: (1) expensive scenario: 102 ×D
fitness evaluations, (2) medium scenario: 104×D evaluations,

and (3) cheap scenario: 105 ×D evaluations, where D is the

benchmark problem dimensionality. The tuned configurations

are then tested using the 24 problems in the BBOB noiseless

benchmarks [19], [20]. In addition, we compare these tuned

DEs to three restart CMA-ES variants that have been shown to

perform well on the BBOB benchmarks: HCMA [21], BIPOP-

CMA-ES [22], and IPOP-CMA-ES [8].

II. SUCCESS-HISTORY BASED ADAPTIVE DE (SHADE)

In this section, we describe SHADE, which is currently

one of the state-of-the-art adaptive DE algorithms [16], [17].1

After first describing SHADE, we describe Restart SHADE

(R-SHADE) in Section II-B, L-SHADE in Section II-C, and

Restart L-SHADE (RL-SHADE) in Section II-D.

A. SHADE

This section briefly describes SHADE [16], [17], shown

in Algorithm 12. A DE population is represented as a set

of real parameter vectors xi = (x1, ..., xD), i = 1, ...,N ,

where D is the dimensionality of the target problem, and N

is the population size. A is an external archive [15] which

stores inferior individuals. A historical memory MCR,MF

stores a set of CR,F values that have performed well in the

past. New CR,F pairs are generated by directly sampling the

1Due to space limitations, we omit a description of standard DE – see [11]
for details.

2For more details, see [17].

1 if SCR ≠ ∅ and SF ≠ ∅ then
2 if MCR,k,G = � or max(SCR) = 0 then
3 MCR,k,G+1 = �;
4 else
5 MCR,k,G+1 =meanWL(SCR);
6 MF,k,G+1 =meanWL(SF );
7 k = k + 1 (If k >H , k = 1);
8 else
9 MCR,k,G+1 =MCR,k,G, MF,k,G+1 =MF,k,G;

Algorithm 2: Memory update algorithm

parameter space close to one of these stored pairs. An index k

(1 ≤ k ≤H) determines the position in the memory to update.

After the initialization procedure, trial vector generation

and selection are repeated until some termination criterion is

encountered. In lines 7–9, in each generation G, the control

parameters CRi and Fi used by each individual xi are

generated by randomly selecting an index ri from [1,H]. In

line 8, if MCR,ri has been assigned the “terminal value” �,
CRi is set to 0.

In line 10, a mutant vector vi,G is generated from an ex-

isting population members by applying the current-to-pbest/1

mutation strategy: vi,G = xi,G + Fi ⋅ (xpbest,G − xi,G) + Fi ⋅

(xr1,G−xr2,G) [15]. Individual xpbest,G is randomly selected

from the top N ×p (p ∈ [0,1]) members in generation G. The

individuals xr1 and xr2 are randomly selected from P and

P ∪A such that they differ from each other as well as xi.

After generating the mutant vector vi,G, it is crossed with

the parent xi,G in order to generate trial vector ui,G. In

SHADE, Binomial Crossover, which is the most commonly

used crossover operator in DE, is used and implemented as

follows: For each j (j = 1, ...,D), if rand[0,1) ≤ CR or

j = jrand, uj,i,t = vj,i,t. Otherwise, uj,i,t = xj,i,t. rand[0,1)
denotes a uniformly selected random number from [0,1), and

jrand is a decision variable index which is uniformly randomly

selected from [1,D].
In line 11–16, after all of the trial vectors have been

generated, a selection process determines the survivors for the

next generation. Parent vectors xi,G which were worse than

the trial vectors ui,G are preserved in A as line 17.

In each generation, CRi and Fi values that succeed in

generating a trial vector ui,G which is better than the parent

individual xi,G are recorded as SCR, SF in line 13. Then, at

the end of the generation, the memory contents are updated us-

ing Algorithm 2. In Algorithm 2, the weighted Lehmer mean

meanWL(S) is computed using the formula below. Where the

amount of fitness improvement ∆fk = ∣f(uk,G)− f(xk,G)∣ is
used in order to influence the parameter adaptation (S refers

to either SCR or SF ).

meanWL(S) =
∑
∣S∣
k=1 wk ⋅ S

2

k

∑
∣S∣
k=1wk ⋅ Sk

,wk =
∆fk

∑
∣SCR∣
l=1 ∆fl

(1)

As MCR is updated, if MCR,k,G = � (where � denotes a

special, “terminal value”) or max(SCR) = 0 (i.e., all elements

of SCR are 0), MCR,k,G+1 is set to �. Thus, if MCR is



assigned the terminal value �, then MCR will remain fixed

at � until the end of the search.

B. R-SHADE: SHADE with Restart

This section describes R-SHADE, which incorporates

restarts into SHADE. Restart strategies that reset and restart

the search when search progress has stalled have been widely

used in the EC community (c.f. [23]). When implementing

a restart strategy, the major design decision is the restart

criterion, which determines when a restart is necessary. If the

restart criterion is too aggressive, then the algorithm might

restart even though search has not really converged. On the

other hand, if the restart criterion is too conservative, then

valuable time may be wasted on an unproductive search effort.

Many restart criteria have been proposed in the literature. In

this paper, we adopt a restart strategy that uses the following

3 criteria (the first two criteria were described in [24]).3

(1) Solution vector x convergence

When there exists some j = (1, ...,D) for which ∆xj

(defined below) is small, restart because the solution

vectors have probably converged. In this paper, εx =
1e−12.

∃j ∆xj < εx max
i=1,...,N

{∣xi,j ∣} (2)

∆xj = max
i=1,...,N

{xi,j} − min
i=1,...,N

{xi,j} (3)

(2) Fitness value f(x) convergence

When there exists some k = (1, ...,N) for which ∆fk
(defined below) is small, restart because the fitness

values have probably converged. In this paper, εf =
1e−12.

∃k∆fk < εf max
i=1,...,N

{∣fi∣} (4)

∆fk = max
i=1,...,N

{fi} − min
i=1,...,N

{fi} (5)

(3) Lack of updates to best-so-far solution

If, within a particular restart iteration, the best-so-

far solution in its iteration has not been updated for

Evalsstop steps, then restart because the search has

probably stopped making progress. In this paper, we

used Evalsstop = 500 ×D.

R-SHADE is a simple modification of SHADE which

applies the three restarts describe above. In Algorithm 1, if

any of restart criteria (1), (2), (3) are met, then the search is

restarted starting at line 1.

C. L-SHADE: SHADE with Linear Population Size Reduction

Strategy

L-SHADE [17] is a variant of SHADE algorithm with Lin-
ear Population Size Reduction (LPSR), a simple deterministic
population resizing method and a special case of SVPS [25]

3In preliminary experiments, there were several multimodal benchmark
problems where criteria (1) and (2) failed to detect that search had clearly
stalled in some circumstances, so we added (3); we also tested (3) by itself,
and found that applying all three criteria performed slightly better than (3)
by itself, so we used a combination of all 3 criteria in this study.

// Initialization phase

1 MaxEvals1iter = MaxEvals/B;
2 Evals= 0;
// Main loop

3 while The termination criteria are not met do

4 Run L-SHADE with budget MaxEvals1iter ;

5 Evals+ = MaxEvals1iter ;

// Adjust MaxEvals1iter to remained budget

6 if MaxEvals1iter > MaxEvals − Evals then

7 MaxEvals1iter = MaxEvals − Evals;

Algorithm 3: RL-SHADE algorithm

which reduces the population linearly, and requires only 1
parameter which needs to be tuned (initial population size
N init). LPSR continuously reduces the population to match
a linear function where the population size at generation 1 is
N init, and the population at the end of the run is Nmin. At
the end of each generation G (line 19), the population size
in the next generation, NG+1, is computed according to the
formula:

NG+1 = round [(Nmin −N init

MaxEvals
) ⋅Evals +N init] (6)

Nmin is set to the smallest possible value such that the

evolutionary operators can be applied. In the case of L-

SHADE, Nmin = 4 because the current-to-pbest mutation

operator requires 4 individuals. Evals is the current number

of fitness evaluations, and MaxEvals is the maximum number

of fitness evaluations.

For explorative search in the beginning of the search, L-

SHADE uses a relatively large initial population size N init

and reduces its size gradually. As a result, the search is

executed with a small population size and becomes more

exploitative. This deterministic population resizing mechanism

makes L-SHADE more robust and effective.

D. RL-SHADE: L-SHADE with Restart

As with SHADE, it seems natural to extend L-SHADE

by implementing a restart strategy. However, in preliminary

experiments, we observed that L-SHADE does not tend to

converge until the population size has shrunk to the minimal

population size Nmin, i.e., until MaxEvals evaluations have

been performed. This is because L-SHADE starts with a rela-

tively large population size. Thus, instead of the same restart

criterion as R-SHADE, RL-SHADE implements a slightly

modified restart strategy.

RL-SHADE (Algorithm 3), which is L-SHADE extended

with restarts, relies on a single restart criterion which is a

modified version of criterion (3) above. Each iteration executes

for at least MaxEvals1iter = MaxEvals/B fitness evaluations,

where B ≥ 1. If at least MaxEvals1iter evaluations have been

performed and the best-so-far solution has not been updated

(improved) within the past 500 × D fitness evaluations, RL-

SHADE restarts from scratch. The basic idea is to allocate

at least MaxEvals1iter evaluations to each iteration, and then

after that point, restart if no recent progress has been made.



TABLE I: For each DE variant, the default control parameter

values, as well as the best parameters found by tuning the

algorithm with SMAC using CEC2014 benchmark problems

F1 ∼ F16 (for D = 2,10,20) as training problems.

(a) R-DE

Parameters Range Default
MaxEvals

10
2 ×D

MaxEvals

10
4 ×D

MaxEvals

10
5 ×D

population rate [0, 10] 5.0 0.15 1.16 1.45

F [0.1, 1] 0.5 0.74 0.53 0.61

CR [0, 1] 0.5 0.39 0.31 0.17

strategy see the text rand/1 current-to-pbest/1 best/1 best/1

p [0, 0.2] 0.05 0.03 n/a n/a

archive rate [0, 2] 1.0 0.68 n/a n/a

(b) R-SHADE

Parameters Range Default
MaxEvals

10
2 ×D

MaxEvals

10
4 ×D

MaxEvals

10
5 ×D

population rate [0, 10] 5.0 0.45 3.74 3.96

initial MF [0, 1] 0.5 0.90 0.53 0.38

initial MCR [0, 1] 0.5 0.06 0.71 0.94

p [0, 0.2] 0.05 0.01 0.13 0.09

archive rate [0, 2] 1.0 1.92 0.65 0.12

memory size [1, 20] 10 16 10 11

(c) RL-SHADE

Parameters Range Default
MaxEvals

10
2 ×D

MaxEvals

10
4 ×D

MaxEvals

10
5 ×D

initial population rate [10, 20] 15 5.19 13.63 16.39

initial MF [0, 1] 0.5 0.84 0.93 0.28

initial MCR [0.1, 1] 0.5 0.12 0.72 0.43

p [0, 0.2] 0.05 0.01 0.09 0.02

archive rate [0, 2] 1.0 1.13 1.86 0.94

memory size [1, 20] 10 7 3 7

B [1, 10] 1 8 1 5

Although we omit the data due to space constraints, RL-

SHADE outperforms standard L-SHADE for cheap scenarios

(MaxEvals = 105 ×D).

III. TUNING THE PARAMETERS USING SMAC

A. Settings

In this section, we describe parameter tuning of R-DE,

R-SHADE, and L-SHADE using the automated algorithm

configuration tool, SMAC. Where, R-DE is the standard DE

algorithm [11] with restart strategy as same with R-SHADE

described in Section II-B.

In recent years, automated algorithm configuration has been

an active area of research in both the AI and EC communities,

and within the DE community, our previous work on L-

SHADE has demonstrated the utility of an algorithm configu-

ration tool for parameter tuning [17]. An algorithm configura-

tor takes as input an algorithm executable, a formal description

of the parameters for the algorithm, and a set of training

problem instances. It searches the space of possible parameter

values by repeatedly generating a candidate configuration (e.g.,

by local search) and evaluating the configuration on the set of

the training instances (or some intelligently selected subset of

training instances). The configuration with highest expected

utility on the training set is returned. Well-known algorithm

configurators include ParamILS [26], irace [27], and SMAC

[18]. In this paper, we use SMAC, which is a surrogate-model

based configurator which can be used to tune real-valued,

integer-valued, categorical, and conditional parameters [18].

We used the most recent version of SMAC downloaded from

the authors’ website4.

The evaluation function used by SMAC to assess the quality

of a candidate DE configuration was the mean of the difference

between the solution found by the DE configuration and the

optimal value for each benchmark function in the training

set, consisting of functions F1 ∼ F16 in 2, 10, and 20

dimensions (i.e., 16 × 3 = 48 problems) from the CEC2014

benchmarks [3]5. We generated sets of tuned parameters for 3

different training scenarios (the DE algorithms were tuned for

3 different fitness evaluation limits): (1) expensive scenario

– 10
2 × D evaluations, (2) medium scenario – 10

4 × D

evaluations, and (3) cheap scenario – 10
5 × D evaluations.

Each run of SMAC was limited to 3,000 DE configurations.

For each DE variant, for each training scenario, SMAC was

run 5 times, and we selected the best result out of these 5

runs. Finally, SMAC itself has some parameters that control

the algorithm configurator; we used the default parameters for

these.

B. SMAC Results

For each DE variant, the default values of the control pa-

rameters (from [15], [16], [17]), the ranges for the parameters,

as well as the values found by SMAC, are shown in Table I.

Binomial crossover was used for all DE variants. For R-DE,

7 possible mutation strategies, rand/1, rand/2, best/1, best/2,

current-to-best/1, current-to-best/2, and current-to-pbest/1 with

archive could be selected.6 The “current-to-pbest/1 with

archive” strategy has control parameter p and archive rate;

these are modeled as conditional parameters [18] in SMAC.

The population size N = max(round(population rate ×

D),6), and archive size ∣A∣ = round(archive rate ×N). Note

that the population size was set to be at least 6 in order to be

compatible with the rand/2 mutation strategy, which requires

at least 6 individuals.

In Table I(a) and (b), when MaxEvals = 102 ×D, the tuned

population rates are 0.15 and 0.45, respectively, which result

in population sizes (recall from above that population size =

max(round(population rate × D), 6)) which are significantly

lower than the standard population size of 100 suggested in

the literature [15], [16]. This is because with a very small

number of fitness evaluations (MaxEvals = 102 ×D), a small

4http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
5We excluded F17 ∼ F30 because 2-dimensional versions were not included

in [3].
6For details on these mutation strategies, see the survey by [12].



population size is selected so that it is possible to greedily

search a focused area of the search space. On the other hand,

as MaxEvals increased from 10
2 ×D to 10

4 ×D to 10
5 ×D,

the population rate also increases, suggesting that as MaxEvals

increases, a less focused search that performs more exploration

leads to better performance. This tendency can be seen in the

tuned population rate of RL-SHADE.

As shown in Table I(c), when RL-SHADE is run with

MaxEvals = 10
2 × D and 10

5 × D, the restart frequency

parameter B is set to 8, 5 (restart frequently, approximately

8-5 times during the run). However, when MaxEvals= 104×D,

B = 1, i.e., no restarts (same as plain L-SHADE). Thus, the

behavior of RL-SHADE changes dramatically depending on

MaxEvals.

As shown above, the results of parameter tuning vary

significantly depending on MaxEvals. This is consistent with

previous results for ACO [7] and IPOP-CMA-ES [9], [10].

Thus, in practice, it is vital to carefully consider the available

computational budget when tuning DE algorithms.

IV. RESULTS

In this section, we evaluate the tuned parameter settings for

R-DE, R-SHADE, RL-SHADE obtained in Section III using

SMAC. For the test problems, we use the 24 problems in

the BBOB noiseless benchmark set [19], [20] (note that these

differ from the CEC2014 benchmarks [3] used as the training

problems).

We compare the DE variants to three CMA-ES variants that

are known well to perform well on the BBOB benchmarks,

HCMA [21], BIPOP-CMA-ES [22] and IPOP-CMA-ES [8].

IPOP-CMA-ES, upon which HCMA and BIPOP-CMA-ES are

based, incorporates a restart strategy into the basic CMA-ES

algorithm [28], and doubles the population size after each

restart, broadening the search after each restart. For IPOP-

CMA-ES, we used the data for IPOP-CMA-ES-tany and IPOP-

CMA-ES-texp, which are results using control parameters

tuned for anytime, expensive scenarios which was provided

in [9]. BIPOP-CMA-ES first executes CMA-ES with a default

population size. Then, it divides the remainder of the time

available evenly between IPOP-CMA-ES and multistart CMA-

ES with a small population size. HCMA [21] is a hybrid

method which incorporates a surrogate model and two local

search methods (NEWOUA [29] and STEP [30]) into BIPOP-

CMA-ES. All experimental data were downloaded from the

BBOB website [31].

A. Impact of Budget Scenario on Tuned Parameters

In this section, we evaluate the parameter settings obtained

for various MaxEvals in Section III. Figure 1 shows the

Empirical Cumulative Distribution Function (ECDF) for each

algorithm, each parameter setting, for 24 BBOB benchmark

problems (10 dimensions) for MaxEvals = {102 × D,104 ×

D,105 × D}. After the DE variant name, 10e2 indicates

the results for tuning with MaxEvals= 10
2 × D, 10e4 is for

MaxEvals= 104 ×D, and 10e5 is for MaxEvals= 105 ×D.

The results for R-DE in Figure 1(a) show that for Max-

Evals = 10
2 × D, R-DE-10e4 performs slightly better than

R-DE-10e2, and R-DE-10e5 is clearly worse than R-DE-

10e2. However, for MaxEvals = 104 ×D, R-DE-10e5 had the

best performance, and for MaxEvals = 10
5 ×D, R-DE-10e5

and R-DE-10e4 perform similarly. In contrast, for MaxEvals

= 104 ×D and 10
5 ×D, R-DE-10e2 performs poorly.

A similar trend can be seen for R-SHADE and RL-SHADE.

Figure 1(b) shows that although R-SHADE-10e2 performs

well for MaxEvals = 10
2 × D, it performs worse than R-

SHADE-10e4 and R-SHADE-10e5 for MaxEvals = 10
4 ×D

and MaxEvals= 105 ×D. Figure 1(c) shows that RL-SHADE-

10e2, RL-SHADE-10e4 and RL-SHADE-10e5 performs best

for MaxEvals = 102 ×D,104 ×D, and 10
5 ×D respectively.7

However, when the computational budget for the training

phase and the testing phase are different, RL-SHADE tends

to perform poorly.

In summary, it appears that the computational budget

(MaxEvals) used during parameter tuning has a significant

impact on performance of R-DE, R-SHADE, and RL-SHADE

when tested under different MaxEvals settings. Thus, when

MaxEvals used for training (tuning) and testing differ sig-

nificantly, it is likely that the parameters obtained by tuning

are inappropriate for the test problem, and one can not

expect good parameters when using parameters optimized for

a computational budget that significantly differ from the target

application scenario. If MaxEvals for a particular application

scenario of DE is known a priori, then it appears that tuning

the control parameters using a computational budget similar

to MaxEvals is necessary in order to maximize performance.

B. Comparing DE algorithms with state-of-the-art restart

CMA-ES variants

In this section, we compare DE algorithms to state-of-the-

art restart CMA-ES variants (HCMA, BIPOP-CMA-ES, IPOP-

CMA-ES). Figures 2 and 3 show the results for expensive

(MaxEvals = 10
2 × D) and cheap (MaxEvals = 10

5 × D)

scenarios for D = 2,3,5,10,20-dimensional BBOB bench-

marks (all 24 problems). For R-DE, R-SHADE, and RL-

SHADE, we tuned the parameters separately for expensive

and cheap scenarios. Since IPOP-CMA-ES-texp was designed

and tuned for expensive scenarios and BIPOP-CMA-ES was

tuned/designed for cheap scenarios, for fairness, we only

include IPOP-CMA-ES-texp data for the expensive scenario,

and BIPOP-CMA-ES data for the cheap scenario.

Figure 2 shows that in the expensive scenario, HCMA

performs best for all dimensions. For D = 2, 3, and 5

dimensions, R-DE-10e2 outperforms R-SHADE-10e2, RL-

SHADE-10e2, IPOP-CMA-ES-tany and IPOP-CMA-ES-texp.

In addition, R-DE-10e2 performs better than RL-SHADE-10e2

for all dimensions. This contradicts the widely held belief that

7Although the restart frequency parameter B for RL-SHADE-10e2 and RL-
SHADE-10e5 is set to 8 and 5 respectively (see Table I(c)), we observed that
they never restarted for MaxEvals = 10

2 ×D. This is because RL-SHADE
continues to run until the best-so-far solution has not been updated for 500×D
evaluations (see Section II-D).
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(a) R-DE
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(b) R-SHADE
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Fig. 1: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimension (FEvals/D) for

50 targets in 10
[−8..2] for 10 dimensional all functions . The “best 2009” line corresponds to the best ERT observed during BBOB 2009 for

each single target. After the DE variant name, 10e2 indicates the results for tuning with MaxEvals= 102×D, 10e4 is for MaxEvals= 104×D,
and 10e5 is for MaxEvals= 105 ×D.

adaptive DE outperforms standard DE, and shows that methods

that are suited for cheap scenarios are not necessarily suited

for expensive scenarios. In addition, this result also shows that

for low-dimensional, expensive scenarios, it is quite possible

for the simple R-DE algorithm to outperform the far more

complex methods such as IPOP-CMA-ES.

Figure 3, which shows the results for the cheap scenario,

shows that in contrast to the expensive scenario, R-DE-10e5

(which performed relatively well in the expensive setting)

performs poorly. Although RL-SHADE-10e5 and R-SHADE-

10e5 lose to HCMA for D =5, 10, 20 and to BIPOP-CMA-

ES and IPOP-CMA-ES-tany for D =10 and 20, RL-SHADE-

10e5 and R-SHADE-10e5 tend to perform quite well for

other values of D. Also, while RL-SHADE-10e5 does not

perform as well as BIPOP-CMA-ES and IPOP-CMA-ES-tany

for D = 10,20 when the number of evaluations is 105×D, RL-

SHADE-10e5 outperforms both BIPOP-CMA-ES and IPOP-

CMA-ES-tany when the number of evaluations is around

= 10
4 × D. From this, it seems that for low-dimensional

and medium scenarios (MaxEvals= 104 ×D), RL-SHADE is

competitive with state-of-the-art restart CMA-ES variants.

However, note that these comparison results on the BBOB

benchmarks for cheap scenarios for SHADE variants and

restart CMA-ES variants somewhat contradict our previous

work [17]. In [17], we showed that on the CEC2014 bench-

marks [3], L-SHADE, which is the non-restarting of RL-

SHADE outperformed two state-of-the-art restart CMA-ES

variants (NBIPOP-ACMA-ES [32] and iCMA-ILS [33]). Pre-

vious work by Liao et al [34] has shown that the comparative

performance of methods can vary significantly depending
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Fig. 2: Comparison of DE algorithms (R-DE, R-SHADE, RL-SHADE) with state-of-the-art restart CMA-ES variants (HCMA, BIPOP-
CMA-ES, IPOP-CMA-ES) on BBOB benchmarks for an expensive scenario (MaxEvals = 102 ×D).
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Fig. 3: Comparison of DE algorithms (R-DE, R-SHADE, RL-SHADE) with state-of-the-art restart CMA-ES variants (HCMA, BIPOP-
CMA-ES, IPOP-CMA-ES) on BBOB benchmarks for a cheap scenario (MaxEvals = 105 ×D).

on the benchmarks used. In a comparison of 7 methods

including IPOP-CMA-ES using the SOCO benchmarks [4]

and CEC2005 benchmarks [2], and showed that the rank

ordering of the methods varied significantly depending on the

benchmarks. An in-depth study of the effect of benchmark

problem set selection on the relative ranking of DE and restart

CMA-ES algorithms is an avenue for future work.

V. CONCLUSION

We presented a parameter tuning study of restarting variants

of standard DE as well as the state-of-the-art adaptive DE,

SHADE. Using the SMAC automated algorithm configuration



tool and the CEC2014 benchmarks as training problems, we

tuned R-DE, R-SHADE, and RL-SHADE for three scenarios:

(1) expensive scenario: MaxEvals= 10
2 × D, (2) medium

scenario: MaxEvals= 104 ×D, (3) cheap scenario: MaxEvals=
10

5×D. We found that the parameter settings found by SMAC

depend significantly on MaxEvals. Each of the tuned param-

eter settings were then tested on the BBOB noiseless bench-

marks under all three scenarios (expensive/medium/cheap). We

showed that when MaxEvals is the same for both tuning and

testing, good performance can be expected, but performance

can be poor if MaxEvals for tuning and testing are not the

same.

The tuned DEs were compared with state-of-the-art restart

CMA-ES variants on the expensive and cheap scenarios.

For D = 2,3,5 dimensions in the expensive scenario, the

simple, restarting standard DE (R-DE) had the best perfor-

mance among all DE variants, and was competitive with the

restart CMA-ES variants, excluding HCMA (which includes

a surrogate-based component specialized for expensive sce-

narios). In the case of cheap scenarios, for low-dimensional

problems, R-SHADE and RL-SHADE were competitive with

restart CMA-ES variants, and for higher dimensions (D =
10,20), RL-SHADE outperforms BIPOP-CMA-ES and IPOP-

CMA-ES when the number of evaluations is around 10
4 ×D.

Our study showed that with tuning, a simple, restarting

version of standard DE can be surprisingly effective for low-

dimensional problems in an expensive optimization setting.

On the other hand, the more sophisticated restarting SHADE

variants perform well for medium and expensive settings, and

are competitive with restart CMA-ES variants depending on

the number of evaluations and the dimensionality. However, in

an expensive scenario, SHADE variants are not competitive

with HCMA. These results suggest that integration of a

surrogate-based component into SHADE as an interesting line

of future work which could result in a competitive adaptive

DE algorithm for expensive optimization.
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[9] T. Liao and T. Stützle, “Expensive optimization scenario: IPOP-CMA-
ES with a population bound mechanism for noiseless function testbed,”
in GECCO (Companion), 2013, pp. 1185–1192.

[10] T. Liao, M. A. M. de Oca, and T. Stützle, “Computational results for
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