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Abstract

We revisit our previous work on comparing black-box differential evolution (BBDE) and
classic differential evolution, where we observed an unexpected residual sensitivity to ro-
tation of BBDE. A detailed analysis of the results shows that it stems from a constraint
handling technique that favours separability. Equipped with these findings, we re-designed
our experiments by using only unbounded decision spaces. The new results show that for
unbounded decision spaces BBDE is indeed invariant to rotation. In addition, we corrected
the pseudocode of the ‘target-to-best’ variants, since we found out that they were written
incorrectly in the original paper.
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1 Introduction

This report presents a revisited study of our previous work [1], where we compared black-box
differential evolution (BBDE) [2] with classic differential evolution (DE) [3] using the COCO
platform [4]. Reading the original paper is a precondition for understanding the following text.

In the original work, the experiments on separable and rotated variants of the ellipsoid prob-
lem (problems fy and fip of the bbob test suite [5]) have demonstrated that while the BBDE
variants are less sensitive to rotation than the DE variants, some sensitivity to this transforma-
tion still persists. The reason for this sensitivity remained unexplained. In addition, we realized
that in the original paper the pseudocode describing DE/target-to-best and BBDE /target-to-
best variants were incorrect.

In this study, we re-investigate the invariance to rotation of the BBDE variants and correct
the pseudocode representing DE/targe-to-best and BBDE/target-to-best. By examining the
results obtained in the previous work and experimenting with different settings we discover that
the sensitivity to rotation was a consequence of using bounded decision spaces and a constraint
handling technique favoring separability.

The rest of this report is organized as follows. Section 2 provides two observations on the
original paper, while Section 3 presents the revisited experiments and their results. Section 4
concludes the report.

2 Observations on the original paper

2.1 Invariance to rotation

In the original experiments, decision spaces were bounded with box constraints. A feasible
solution p = (x1,...2p)7T satisfied the following constraints: —5 < x; < 5 for all 4 € {1,..., D}.
In order to satisfy these constraints, a constraint handling technique, replacing any infeasible
component of the solution with a randomly selected feasible value, was used.

Figure 1 shows an example describing how an infeasible solution (red point) is replaced with a
feasible one (black point). In this two-dimensional example the infeasible solution violates the x1-
constraint only. The constraint handling technique replaces x1 with a randomly selected feasible
value from [—5,5] keeping the value of xd intact. This specific constraint handling technique
implicitly imposes an exploration bias toward searching in directions aligned with coordinate
system axes. In other words, an optimizer using a similar constraint handling technique would
show superior performance on separable problems.
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Figure 1: The constraint handling technique replacing the infeasible solution (red point) with a feasible
one (black point). The direction of replacing the infeasible solutions is aligned with the z-axis.



Figure 2 shows the results of the original experiments obtained for the two ellipsoid problems
in 20 dimensions. The BBDE performance is slightly better on the separable problem. Exam-
ining the results in more detail we find that about 26% of generated solutions for the ellipsoid
problem have at least one infeasible value. In other words, in 26% of the cases the constraint
handling technique imposes a bias towards searching in separable directions.
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Figure 2: ECDFs of simulated (bootstrapped) runtimes of the ‘rand’ strategy for separable (left) and
rotated (right) ellipsoid and dimension 20. The yellow line indicates DE/rand, the purple line BBDE-N;,
and the blue line BBDE.

2.2 The ‘target-to-best’ strategies

The general form of the DE used in our work is shown in Algorithm 1. In the original paper, the
pseudocode of the DE/target-to-best and BBDE /target-to-best variants was incomplete. The
paper incorrectly stated that the trial vector is created as

Ptrial = P + F- (pbest - p)

in DE/target-to-best and as
Dtrial =P+ F - (pbest - p2)

in BBDE /target-to-best. Is this report, we present the correct pseudocode in Algorithms 2 and
3, respectively.

3 Revisited experimental setup and results

3.1 Invariance to rotation

In this revisited study, decision spaces are unbounded in all the experiments. Thus, any solution
generated by any algorithm is feasible, and therefore no constraint handling technique needs
to be used. However, the initial population is generated in such a way that its solutions lie in
[—5,5]P. All other settings are equal to those from the original experiments.

3.2 Results

The overall performance of the DE and BBDE variants on bounded and unbounded decision
spaces is shown in Figures 3, 5, and 7. We can observe that the results of the revisited exper-
iments are almost identical to those in the original experiments. For this reason, no additional
comments are provided here (the interested reader is referred to the original paper [1]).



Algorithm 1 DE

Input: population size and stopping criterion;
Output: population P of solutions;

1: create the initial population P of random solutions;
2: evaluate the solutions in IP;

3: while stopping criterion not met do

4: Prew @;
5: for all p € P do
6: create a trial vector pirial;
7 ensure feasibility of piial;
8: evaluate Dirial;
9: if pirial is better than p then
10: P < Ptrial;
11: end if
12: Phew < Pnew U {p};
13: end for
14: P <+ Poew;

15: end while
16: return P;

Algorithm 2 Trial vector creation by DE/target-to-best

Input: population P and target vector p € P;

Output: trial vector pirial;

1: randomly select two different solutions pi, ps € P;

2: create a trial vector pyal = p + F - (Phest — p) + F - (p1 — p2);
3: alter piia1 by crossover with p;

4: return pirial;

Algorithm 3 Trial vector creation by BBDE/target-to-best

Input: population P and target vector p € P;
Output: trial vector piria;

randomly select two different solutions pi, ps € P;
sample a scaling factor F' from Xp ~ exp(N(0,1));

create a trial vector pyial = p+ F - (Pbest — ) + F - (p1 — p2);
return peal;

—_

In contrast, from Figures 4, 6, and 8 it is evident that while the DE variants are highly
sensitive to rotation, the performance of the BBDE variants is equal on separable and rotated
ellipsoid problems when the decision space is unbounded. We can conclude that the observed
sensitivity to rotation in our original experiments was a consequence of using a constraint han-
dling technique favoring separability.

4 Conclusions

In this study, we re-investigated the rotational invariance of BBDE. We found that the rotational
sensitivity observed on the ellipsoid problem is due to a constraint handling technique favoring
separability. By re-designing our experiments so that unbounded decision spaces are used instead
of bounded ones, we showed that for unbounded decision spaces the performance of BBDE is



1.0 T 1.0 RPN 1.0 EFIE
[l BT > best 2009 [l B T peh  De2009 il Bt best 2009
a 15 instances. E 15 instances ~ E 15 instances
Q o Q
go.s Ago.s EﬁoAB
E uDE-rand E uDE-rand E uDE-rand
c0.6 c 0.6 c 0.6
o .o o
! g E
204 304 304
s BBDE 5 uBBDE-N 5 BBDE
So2 So2 7 So2
g 8
“ 0.0 ~ 221 uBBDE-N s y221 BBDE w o.rr"’* uBBDE-N
0 2 4 6 8 0 2 6 8 0 2 6 8
log10(# f-evals / dimension) log10(# f-evals / dimension) log10(# f-evals / dimension)
(a) Dimension 2 (b) Dimension 3 (c¢) Dimension 5
« 1-0{obbine 100 best 2009 » 1.0 bbb 122 200 best 2009 » 1.0 obob 1122 200 best 2009
14 51 targets: 100..1e-08 [ 51 targets: 100..1e-08 [ 51 targets: 100..1e-08
E 15 instances. E 15 instances E 15 instances
o o Qo
agoAa Ago.s AgoAa
s E—0uBBDEN s UBBDE-N 8 UBBDE-N
£ 0.6 < 0.6 < 0.6
o ° 8
g b g E
204 ?} DE-rand 204 BBDE 204 DE
- uDE-ran “ -
<) 7 ) __p(a/aj 5]
c c T c
So02 4 So0.2 A So02
Y W’—Ae’/] Y221 BBDE “ oo Labeef o uDE-rand R S -rand
0 2 4 6 8 0 2 4 6 8 0

log10(# f-evals / dimension)

(d) Dimension 10

log10(# f-evals / dimension)

(e) Dimension 20

log10(# f-evals / dimension)

(f) Dimension 40

Figure 3: ECDFs of simulated (bootstrapped) runtimes of the ‘rand’ strategy for different problem
dimensions (see [1] for more details), where the yellow line indicates the unbounded DE/rand, the purple
line the unbounded BBDE-N, and the blue line the unbounded BBDE.
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Figure 4: ECDFs of simulated (bootstrapped) runtimes of the ‘rand’ strategy for the separable (top
line) and rotated (bottom line) ellipsoid in dimensions 10 (first two columns) and 20 (last two columns).
The yellow line indicates DE/rand, the purple line BBDE-N, and the blue line BBDE (see [1] for more
details). Plots (a), (c), (e) and (g) show the performance of the algorithms on the bounded decision
space, while the remaining plots (b), (d), (f) and (h) on the unbounded decision space.
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Figure 5: ECDFs of simulated (bootstrapped) runtimes of the ‘best’ strategy for different problem
dimensions (see [1] for more details), where the purple line indicates the unbounded DE/best, and the
blue line the unbounded BBDE /best.
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Figure 6: ECDFs of simulated (bootstrapped) runtimes of the ‘best’ strategy for the separable (top
line) and rotated (bottom line) ellipsoid in dimensions 10 (first two columns) and 20 (last two columns).
The yellow line indicates DE/rand, the purple line BBDE-N, and the blue line BBDE (see [1] for more
details). Plots (a), (c), (e) and (g) show the performance of the algorithms on the bounded decision
space, while the remaining plots (b), (d), (f) and (h) on the unbounded decision space.
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Figure 7: ECDFs of simulated (bootstrapped) runtimes of the ‘target-to-best’ strategy for different
problem dimensions (see [1] for more details), where the purple line indicates the unbounded DE/target-
to-best, and the blue line the unbounded BBDE/target-to-best.
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Figure 8: ECDF's of simulated (bootstrapped) runtimes of the ‘target-to-best’ strategy for the separable
(top line) and rotated (bottom line) ellipsoid in dimensions 10 (first two columns) and 20 (last two
columns). The yellow line indicates DE/rand, the purple line BBDE-N, and the blue line BBDE (see
[1] for more details). Plots (a), (c), (¢) and (g) show the performance of the algorithms on the bounded
decision space, while the remaining plots (b), (d), (f) and (h) on the unbounded decision space.



indeed invariant to rotation on the ellipsoid problem. In addition, we corrected the pseudocode
describing ‘target-to-best’ variants, since they were written incorrectly in the original work.
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