Benchmarking the Borg MOEA on the Biobjective bbob-biobj Testbed

> Dimo Brockhoff, Pascal Capetillo, Jonathan Hornewall, Raphael Walker

Introduction

Evolutionary Computing Algorithms

Components of the Borg MOEA

- ε-archive
- Randomized restart
- Auto-adaptive multi-operator recombination

Adaptation of the $\boldsymbol{\varepsilon}$

Results

Conclusion

Evolutionary Computing Algorithms

• The goal is to find the pareto front

Definition 2.1. For $\epsilon \in \mathbb{R}^+$, a vector $u \in \mathbb{R}^n$ Pareto-dominates another vector $v \in \mathbb{R}^n$ if $\forall i \in \{1, 2...n\}$ ($u_i \leq v_i$) and $\exists i \in \{1, 2...n\}$ ($u_i < v_i$). This is denoted v > uDefinition 2.2. For $\epsilon \in \mathbb{R}^+$, a vector $u \in \mathbb{R}^n$ ϵ -dominates another vector $v \in \mathbb{R}^n$ if $\forall i \in \{1, 2...n\}$ ($u_i \leq v_i + \epsilon$) and $\exists i \in \{1, 2...n\}$ ($u_i < v_i + \epsilon$)

- A population of solutions are "evolved" via evolutionary operators to explore the solution space.
- A record of all non-pareto dominated solutions is kept in an archive.
- Over time, the archive will (hopefully) approximate the pareto front.

Components of the Borg: ϵ -archive

Epsilon archive

Epsilon boxes

Stagnation

Definition 2.3. For $\epsilon \in \mathbb{R}^+$, a vector $u \in \mathbb{R}^n \epsilon$ -box dominates another vector $v \in \mathbb{R}^n$ if one of the following holds

- $\lfloor u/\epsilon \rfloor \leq \lfloor v/\epsilon \rfloor$
- $\left[u/\epsilon\right] = \left[v/\epsilon\right]$ and $\left\|u \lfloor u/\epsilon\rfloor\right\| < \left\|v \lfloor v/\epsilon\rfloor\right\|$

Components of the Borg: Randomized restart

Components of the Borg: Auto-adaptive multi-operator recombination

Adaptation of the ϵ

- The ϵ parameter associated to a certain objective is scaled to the range of that objective
- The range of an objective is approximated as the algorithm runs

Results

Results

Conclusion

- Does not outperform current top-of-class algorithms on the bbob biobj suite
- Test suite does not account for more than two objectives, a key use-case for the Borg MOEA
- Parameter tuning of the ε has positive impact on the performance. Further tuning an avenue for continued research

Thanks for listening!