Stopping Criteria, Initialization, and Implementations of BFGS and their Effect on the BBOB Test Suite

Aurore Blelly, Matheus Felipe-Gomes, Anne Auger, Dimo Brockhoff

Inria and Ecole Polytechnique, France

Benchmarking

... is benchmarking of algorithm implementations

Goal: understand impact of

- algorithm parameter settings
- BBOB settings (initialization, instances, ...)
- implementation aspects

for a basic, well-known and often used algorithm:

BFGS: quasi-Newton method as proposed by Broyden, Fletcher, Goldfarb, and Shanno

An (Assisted) Student Project

Term project @ Ecole Polytechnique

- group of 2 students
- one afternoon a week
- weekly meeting
- from zero to a BBOB paper within a few months

BFGS in a nutshell

- quasi-Newton method
- in each iteration:
 - find search direction p_k
 - via $B_k p_k = -\nabla f(x_k)$
 - with B_k an approximation of the Hessian (and the gradient $\nabla f(x_k)$ estimated by finite differences)
 - do line search along p_k
 - update B_k (details omitted)
- implemented as default
 - in Matlab's fminunc
 - in Python's scipy.optimize

Experimental Setup

- Matlab experiments of Ros from 2009 as baseline
- as well as Posik/Baudis' scipy results (with basin hopping)
- compared to Matlab'17 default (+ same 2009 setup)
- Python version (1.0.1 default as P-2009) plus
 - different instances: P-Instances with 2017 instances
 - different initial point:
 - P-StPt with each restart from 0
 - **P-Range** with random starting point in $[-4,4]^n$
- Iittle tuning:
 - on rotated ellipsoid and discus only
 - few values of FiniteDifferenceStepSize (MATLAB) and epsilon (Python) tested
 - best parameter chosen (we observed a clear minimum)

Summary in 20-D

Summary in 20-D

f19: Indicating the Initialization

19 Griewank-Rosenbrock F8F2

f19: Indicating the Initialization

19 Griewank-Rosenbrock F8F2

log10(# f-evals / dimension)

Most Notable Results

Benchmarking BFGS Variants @ BBOB'2018

Pay Attention!

Pay Attention!

Summary

- Implementation details have a strong effect
 - Python BFGS clearly better than MATLAB
- BBOB instances have little effect
- so does the initialization (but origin as first point best)
- random restarts better on BBOB than basin hopping

Conclusions

- use Python's BFGS over MATLAB if you can
- pay attention:
 - when applying algorithms
 - when interpreting benchmarking results

