8th GECCO Workshop on
Blackbox Optimization Benchmarking (BBOB):
Welcome and Introduction to COCO/BBOB

The BBOBies
https://github.com/numbbo/coco

y 4

(rezia—

INVENTORS FOR THE DIGITAL WORLD

slides based on previous ones by A. Auger, N. Hansen, and D. Brockhoff






Numerical Blackbox Optimization

Optimize f: Q c R"® = R¥

x € R" f(x)eIR"‘>




Practical Blackbox Optimization

Given:

x € R" f(x)eIR"‘>

Not clear:
which of the many algorithms should | use on my problem?



Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder & Mead 1965]

Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods

Evolutionary Algorithms (continuous domain)
* Differential Evolution [Storn & Price 1997]
* Particle Swarm Optimization [Kennedy & Eberhart 1995]
* Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen & Ostermeier 2001]
* Estimation of Distribution Algorithms (EDAS) [Larrafiaga, Lozano, 2002]
* Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
° [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]

Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]



Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder & Mead 1965]

Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods

Evolutionary Algorithms (continuous domain)
Differential Evolution [Storn & Price 1997]
Particle Swarm Optimization [Kennedy & Eberhart 1995]
Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen & Ostermeier 2001]
Estimation of Distribution Algorithms (EDAS) [Larrafiaga, Lozano, 2002]
Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]

[Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]
Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

* choice typically not immediately clear

* although practitioners have knowledge about which
difficulties their problem has (e.g. multi-modality, non-
separability, ...)



Need: Benchmarking

* understanding of algorithms
* algorithm selection

 putting algorithms to a standardized test
* simplify judgement
* simplify comparison
* regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

* choosing (and implementing) problems, performance
measures, visualization, stat. tests, ...

* running a set of algorithms



that's where COCO and BBOB come into play

\,

Comparing Continuous Optimizers Platform
https://github.com/numbbo/coco



automatized benchmarking



How to benchmark algorithms with COCO?
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O This repository Pull requests Issues Marketplace Gist

& numbbo / coco @ Unwatch~ 15 W Unstar 38
¢y Code Issues 133 Pull requests 1 Projects 9 Settings Insights =

Numerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/

Add topics

D 16,007 commits ¥ 11 branches > 31 releases 4% 15 contributors

Branch: master = New pull request Create new file = Upload files = Find filg Clone or download +

1"} brockho committed on GitHub Merge pull request #1352 from numbboy/development - Latest commit 4b14597a on 20 Apr

B code-experiments A little more verbose error message when suite regression test fails a month ago
8 code-postprocessing Hashes are back on the plots. a month ago
B code-preprocessing Fixed preprocessing to work correctly with the extended biobjective s... 3 months ago
| howtos Update create-a-suite-howto.md 4 months ago

| .clang-format raising an error in bbob2009_logger.c when best_value is MULL. Plus s... 2 years ago
E) hgignare raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago

] AUTHORS small correction in AUTHORS a year ago
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numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in ANSI € with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous
optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

® C/C++
® Java

® MATLAB/Octave
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LICENSE Update LICEMSE 11 months ago

README.md Added link to #1335 before closing. a month ago
do.py refactoring here and there in do.py to get closer to PEPS specifications 2 months ago

doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 2 years ago

EB README.md

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in ANSI C with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous
optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

® C/C++
Java
MATLAB/Octave

Python
Contributions to link further languages (including a better example in c++ ) are more than welcome.
For more information,

® read our benchmarking quidelines introduction

® read the COCO experimental setup description
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numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in AnsI ¢ with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous

optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

® C/C++
® Java

® MATLAB/Octave

er languages (including a better example in C++ ) are more than welcome.
For more information,

® read our benchmarking guidelines introduction
® read the COCO experimental setup description

® see the bbob-biobj and bbob-biobj-ext COCO multi-objective functions testbed documentation and the specificities

of the performance assessment for the bi-objective testbeds.
consult the BBOB workshops series,

consider to register here for news,

see the previous COCO home page here and

see the links below to learn more about the ideas behind CoCO.
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0. Check out the Requirements above. req uireme nts
1. Download the COCO framework code from github, & d own I Oo4d d

® either by clicking the Download ZIP button and unzip the zip file,

® or by typing git clone https://github.com/numbbo/coco.git . This way allows to remain up-to-date easily (but needs
git to be installed). After cloning, git pull keeps the code up-to-date with the latest release.

The record of official releases can be found here. The latest release corresponds to the master branch as linked above.

2.In a system shell, cd into the coco or coco-<version> folder {framework root), where the file do.py can be found.
Type, i.e. execute, one of the following commands once

python do. run-c
python do. run-java
python do. run-matlab
python do. run-octave
python do. run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under code-experiments/build
/<language> (<language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall be post-processed, run

python do.py install-postprocessing
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Getting Started
0. Check out the Requirements above.

1. Download the COCO framework code from github,

® either by clicking the Download ZIP button and unzip the zip file,

® or by typing git clone https://github.com/numbbo/coco.git . This way allows to remain up-to-date easily (but needs
git to be installed). After cloning, git pull keeps the code up-to-date with the latest release.

The record of official releases can be found here. The latest release corresponds to the master branch as linked above.

2.In a system shell, cd into the coco or coco-<version> folder {framework root), where the file do.py can be found.
Type, i.e. execute, one of the following corg

python do.py run-c installation I: experiments

python do.py run-matlab

python do.py run-octave
python do.py run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under code-experiments/build
/<language> (<language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall be post-processed, run

python do.py install-postprocessing
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example expenment once. he build result and the example expenment code can be found under code-experiments/build

/<language> ( <language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall b

installation II: postprocessing

to (user-locally) install the post-processing. From here on,
builds to a new release.

4. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example_experiment.py . Run the example experiment (it already is compiled). As the details

vary, see the respective read-me’s and/or example experiment files:

c read me and example experiment
Java read me and example experiment
Matlab/Octave read me and example experiment

Python read me and example experiment

If the example experiment runs, connect your favorite algorithm to Coco: replace the call to the random search optimizer in
the example experiment file by a call to your algorithm (see above). Update the output result_folder , the algorithm_name

and algorithm_info of the observer options in the example experiment file.
Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.
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example expenment once. he build result and the example expenment code can be found under code-experiments/build

/<language> ( <language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall be post-processed, run

python do.py install-postprocessing

to (user-locally) install the post-processing. From here on, do.py has done its job and is only needed again for updating the
builds to a new release.

4. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example_experiment.py . Run the example experiment (it already is compiled). As the details

see the respective read-me's and/or example experiment files:

c read me and example experiment

Java read me and example experiment

coupling algo + COCO

Matlab/Octave read me and example experiment

Python read me and example experiment

If the example experiment runs, connect your favorite algorithm to Coco: replace the call to the random search optimizer in
the example experiment file by a call to your algorithm (see above). Update the output result_folder , the algorithm_name

and algorithm_info of the observer options in the example experiment file.
Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.




example_experiment.c (slightly simplified)

/* Iterate over all problems in the suite */
while ((PROBLEM = coco_suite get next problem(suite, observer)) != NULL)

{

size t dimension = coco_problem get dimension(PROBLEM) ;

/* Run the algorithm at least once */
for (run = 1; run <= 1 + INDEPENDENT RESTARTS; run++) {

size t evaluations_done = coco_problem get evaluations (PROBLEM) ;

long evaluations_ remaining =
(long) (dimension * BUDGET MULTIPLIER) - (long)evaluations_done;

if (... || (evaluations_remaining <= 0))
break;

my random search(evaluate function, dimension,
coco_problem get number of objectives (PROBLEM) ,
coco_problem get smallest values of interest (PROBLEM),
coco_problem get largest values of interest (PROBLEM),
(size_t) evaluations_remaining,
random generator) ;

. _____________d
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Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

6. Postprocess the data from the results folder by typing

python -m cocopp [-o OUTPUT_FOLDERNAME] YOURDA

running the experiment

Any subfolder in the folder arguments will be searched fo
different folders collected under a single "root” YOURDATAFOLDER folder. We can also compare more than one algorithm by

specifying several data result folders generated by different algorithms.

A folder, ppdata by default, will be generated, which contains all output from the post-processing, including an index.html
file, useful as main entry point to explore the result with a browser. Data might be overwritten, it is therefore useful to change
the output folder name with the -o OUTPUT_FOLDERNAME option.

A summary pdf can be produced via LaTeX. The corresponding templates can be found in the code-postprocessing/latex-
templates folder. Basic html output is also available in the result folder of the postprocessing (file
templateBBOBarticle.html ).

7. Once your algorithm runs well, increase the budget in your experiment script, if necessary implement randomized
independent restarts, and follow the above steps successively until you are happy.

8. The experiments can be parallelized with any re-distribution of single problem instances to batches (see
example_experiment.py for an example). Each batch must write in a different target folder (this should happen
automatically). Results of each batch must be kept under their separate folder as is. These folders then must be
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Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

6. Postprocess the data from the results folder b

python -m cocopp [-o OUTPUT_FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]

Any subfolder in the folder arguments will be searched for logged data. That is, experiments from different batches can be in
different folders collected under a single "root” YOURDATAFOLDER

specifying several data result folders generated by different algg

postprocessing

A folder, ppdata by default, will be generated, which contains 3
file, useful as main entry point to explore the result with a brows®
the output folder name with the -o OUTPUT_FOLDERNAME option.

A summary pdf can be produced via LaTeX. The corresponding templates can be found in the code-postprocessing/latex-
templates folder. Basic html output is also available in the result folder of the postprocessing (file
templateBBOBarticle.html ).

7. Once your algorithm runs well, increase the budget in your experiment script, if necessary implement randomized
independent restarts, and follow the above steps successively until you are happy.

8. The experiments can be parallelized with any re-distribution of single problem instances to batches (see
example_experiment.py for an example). Each batch must write in a different target folder (this should happen
automatically). Results of each batch must be kept under their separate folder as is. These folders then must be
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Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

6. Postprocess the data from the results folder b

new feature: data archive

python -m cocopp BFGS! BIPOP! 1lmm*

8. The experiments can be parallelized with any re-distribution of single problem instances to batches (see
example_experiment.py for an example). Each batch must write in a different target folder (this should happen
automatically). Results of each batch must be kept under their separate folder as is. These folders then must be
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doesn't look too complicated, does it?

[the devil is in the details ©]



so far (i.e. incl. BBOB-2018):

data for 200+ algorithm variants
(some of which on noisy or multiobjective test functions)
136 workshop papers
by 101 authors from 28 countries



Measuring Performance

On

* real world problems
* expensive
* comparison typically limited to certain domains
e experts have limited interest to publish

 "artificial" benchmark functions
* cheap
e controlled
* data acquisition is comparatively easy
* problem of representativeness



Test Functions

define the "scientific question”
the relevance can hardly be overestimated
should represent "reality"
are often too simple?
remind separability
account for invariance properties

prediction of performance is based on “similarity”,
ideally equivalence classes of functions



Available Test Suites in COCO

* bbob 24 noiseless fcts 180+ algo data sets
* bbob-noisy 30 noisy fcts 40+ algo data sets
* bbob-biobj 55 bi-objective fcts 16 algo data sets

Almost finished:
» extended bi-objective suite (bbob-biobj-ext)
* large-scale version of bbob (bbob-largescale)

Under development/in planning phase:
e constrained test suite (bbob-constrained)
* mixed-integer suite

* real-world problems
(see also the game benchmarking workshop)



How Do We Measure Performance?

Meaningful quantitative measure
e guantitative on the ratio scale (highest possible)

"algo A is two times better than algo B" is a meaningful statement
e assume a wide range of values

* meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world



runtime or first hitting time is the prime candidate
(we don't have many choices anyway)



Measuring Performance Empirically

convergence graphs is all we have to start with...
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ECDF:
Empirical Cumulative Distribution Function of the Runtime
[aka data profile]



A Convergence Graph .
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First Hitting Time is Monotonous
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15 Runs
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15 Runs £ 15 Runtime Data Points
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Empirical Cumulative Distribution
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e.g. 60% of the runs need between 2000 and 4000 evaluations
80% of the runs reached the target



Reconstructing A Single Run
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Reconstructing A Single Run

50 equally
spaced targets

function value

log,,(function evaluations)



Reconstructing A Single Run

110py—

oo} o

YA k" T

function value

o 3 N — .

7 - — — S 3 — — -

60

T 2 3 4
log,,(function evaluations)



Reconstructing A Single Run
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Reconstructing A Single Run
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Reconstructing A Single Run

110

the ECDF recovers
the monotonous
graph,
discretised and
flipped

function value

o) NS - SO S SN N SRS RN S

60

T 2 3 4
log,o(function evaluations)



Reconstructing A Single Run

110

function value

60

sob ]

w L

the ECDF recovers
the monotonous
graph,
discretised and
flipped

2 3 4
log,o(function evaluations)



Aggregation
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Aggregation
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Aggregation
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Aggregation
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Aggregation
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Interpretation
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Fixed-target: Measuring Runtime

ps(Algo A) << 1, fast convergence

Dy (A.lgo B) ~ 1, slow convergence




Fixed-target: Measuring Runtime

e Algo Restart A:

p,(Algo Restart A) = 1

 Algo Restart B:

p,(Algo Restart A) = 1



Fixed-target: Measuring Runtime

* Expected running time of the restarted algorithm:

1-p
E[RTT] — D - E[RTunsuccessful] + E[RTsuccessful]
S

e Estimator average running time (aRT):

__ #successes
Ps =

#runs

RT,,,succ = Average evals of unsuccessful runs

RT, .. = Average evals of successful runs

total #evals

aRT =
#successes



ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated restarted
algorithms:
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Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

* never aggregate over dimension
* but often over targets and functions

* can show data of more than 1 algorithm at a time
1.0

t pairs

150 algorithms
from BBOB-2009
till BBOB-2015

Proporti

loal0 of (# f-evals / dimension)



More Automated Plots...

..but no time to explain them here ®
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More Automated Plots...
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and now?



BBOB-2018

Session Sunday 15th of July, 2018 - Training Room 1 (2F)
oelel e The BBOBies: A Short Introduction to COCO and BBOB

Kouhei Nishida* and Youhei Akimoto: Benchmarking the PSA-CMA-ES on the BBOB
09:45 - 10:05 ]
Noiseless Testbed

Duc Manh Nguyen: Benchmarking a Variant of the CMAES-APOP on the BBOB Noiseless
10:05 - 10:25 Testbed

Aurore Blelly, Matheus Felipe-Gomes, Anne Auger, and Dimo Brockhoff*: Stopping
i Criteria, Initialization, and Implementations of BFGS and their Effect on the BBOB Test
Suite

Aljosa Vodopija, Tea TuSar™, Bogdan Filipi¢: Comparing Black-Box Differential Evolution
10:40 - 11:00 A . .
and Classic Differential Evolution

L S The BBOBies: Workshop Wrapup and Discussion
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coco.gforgeinniafr [&

E] Most Visited @0 Getting Started r'{ algorithms [COmparin... O numbbo/numbbo - Gi...

[[start]]

[@, Show pagesource [] Old revisions

COCO (COmparing Continuous Optimisers)
is a platform for systematic and sound

— T T )
comparisons of real-parameter global - __mngnn?]r&
optimisers. COCO provides benchmark e ; __,t':".é',;fc"‘(“ -

I function testbeds, experimentation _,/E"Efﬁm
templates which are easy to parallelize, H 4'—';_—'% A S
and tools for processing and wvisualizing E‘O-G \ygol-ﬂt [Han)
data generated by one or several 3 % Egt\-:i 5

— A (Doe)
optimizers. The COCO platform has been im \ i g
used for the Black-Box-Optimization- - AN t‘-}gsﬂm
Benchmarking (BBOB) workshops that took N\ Rosenbrock
place during the GECCO conference in b \:"E.?.f.ﬁ
2009, 2010, 2012, 2013 and 2015. It was . Inecy

o G
also used at the IEEE Congress on an * Mohte gario
" $ ' 16"

Evolutionary Computation (CEC'2015) in 10° 1t ﬁmi“;]im}:mmil:: ke
Sendai, Japan. The COCO source code is
available at the downloads page.

= @) Black-Box Optimization Benchmarking {BBOB) 2016

m Black-Box Optimization Benchmarking (BBOB) 2015

®m CEC'2015 special session on Black-Box Optimization Benchmarking (CEC-BBOB 2013)
m Black-Box Optimization Benchmarking (BBOB) 2013

® Black-Box Optimization Benchmarking (BBOB) 2012

m Black-Box Optimization Benchmarking (BBOB) 2010

m Black-Box Optimization Benchmarking (BBOB) 2009

m Downloads and documentations

To subscribe to (or unsubscribe from) the bbob discussion mailing list follow this link @ http://lists.Iri.fr
[ Jcgi-bin/mailman/listinfo/bbob- discuss .

To receive announcements related to the BBOB workshops simply send an email to BBOB team
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