8th GECCO Workshop on
Blackbox Optimization Benchmarking (BBOB):
Welcome and Introduction to COCO/BBOB

The BBOBies
https://github.com/numbbo/coco

y 4

(rezia—

INVENTORS FOR THE DIGITAL WORLD

slides based on previous ones by A. Auger, N. Hansen, and D. Brockhoff

Numerical Blackbox Optimization

Optimize f: Q c R"® = R¥

x € R" f(x)eIR"‘>

Practical Blackbox Optimization

Given:

x € R" f(x)eIR"‘>

Not clear:
which of the many algorithms should | use on my problem?

Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder & Mead 1965]

Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods

Evolutionary Algorithms (continuous domain)
* Differential Evolution [Storn & Price 1997]
* Particle Swarm Optimization [Kennedy & Eberhart 1995]
* Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen & Ostermeier 2001]
* Estimation of Distribution Algorithms (EDAS) [Larrafiaga, Lozano, 2002]
* Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
° [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]

Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder & Mead 1965]

Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods

Evolutionary Algorithms (continuous domain)
Differential Evolution [Storn & Price 1997]
Particle Swarm Optimization [Kennedy & Eberhart 1995]
Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen & Ostermeier 2001]
Estimation of Distribution Algorithms (EDAS) [Larrafiaga, Lozano, 2002]
Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]

[Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]
Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

* choice typically not immediately clear

* although practitioners have knowledge about which
difficulties their problem has (e.g. multi-modality, non-
separability, ...)

Need: Benchmarking

* understanding of algorithms
* algorithm selection

 putting algorithms to a standardized test
* simplify judgement
* simplify comparison
* regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

* choosing (and implementing) problems, performance
measures, visualization, stat. tests, ...

* running a set of algorithms

that's where COCO and BBOB come into play

\,

Comparing Continuous Optimizers Platform
https://github.com/numbbo/coco

automatized benchmarking

How to benchmark algorithms with COCO?

https://github.com/numbbo/coco

O numbbo/coco: Mumerical .. *
é (i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':h

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

O This repository Pull requests Issues Marketplace Gist

& numbbo / coco @ Unwatch~ 15 W Unstar 38
¢y Code Issues 133 Pull requests 1 Projects 9 Settings Insights =

Numerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/

Add topics

D 16,007 commits ¥ 11 branches > 31 releases 4% 15 contributors

Branch: master = New pull request Create new file = Upload files = Find filg Clone or download +

1"} brockho committed on GitHub Merge pull request #1352 from numbboy/development - Latest commit 4b14597a on 20 Apr

B code-experiments A little more verbose error message when suite regression test fails a month ago
8 code-postprocessing Hashes are back on the plots. a month ago
B code-preprocessing Fixed preprocessing to work correctly with the extended biobjective s... 3 months ago
| howtos Update create-a-suite-howto.md 4 months ago

| .clang-format raising an error in bbob2009_logger.c when best_value is MULL. Plus s... 2 years ago
E) hgignare raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago

] AUTHORS small correction in AUTHORS a year ago

https://github.com/numbbo/coco

S =TT s
-

O numbbo/coco: Mumerical .. *
é (i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':h

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

O This repository Pull requests Issues Marketplace Gist

& numbbo / coco @ Unwatch~ 15 W Unstar 24
¢y Code Issues 133 Pull requests 1 Projects 9 Settings Insights =

Numerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/

Add topics

D 16,007 commits ¥ 11 branches > 31 releases 4% 15 contributors

Branch: master = New pull request Create new file = Upload files = Find file Clone or download «

1"} brockho committed on GitHub Merge pull request #1352 from numbboy/development - Clone with HTTPS & Use 35H

_ i)]] Use Git or checkout with SWN using the web URL.
B code-experiments A little more verbose error message when suite regression test fai

https://github.com/numbbo/coco.git @-
8 code-postprocessing Hashes are back on the plots.
@ code-preprocessing Fixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP
i howtos Update create-a-suite-howto.md 4 months ago
E) .clang-format raising an error in bbob2009_logger.c when best_value is MULL. Plus s... 2 years ago

E) hgignare raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago

E) AUTHORS small correction in AUTHORS a year ago

[

__https://github.com/numbbo/coco

Q numbbo/coco: Mumerical ...

(' 'ﬁ:' & GitHub, Inc. (US] https://github.com/numbbo/coco £ ﬁ' E l' ‘ﬁ‘

[2) Most Visited @ Getting Started & COCO-Algorithms €) numbbo/numbbe - Gi.. [RandOpt @& CMAP @ Inria GitLab T RER B from lab

L humbbo / coco @ Unwatch~ 15 WUnstar 38 YFork 24
<» Code Issues 133 Pull requests 1 Projects 9 Settings Insights =

Mumerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/

Add topics

0 16,007 commits ¥ 11 branches @ 31 releases AL 15 contributors

Branch: master v MNew pull request Create new file | Upload files | Find file Clone or download

1"} brockho committed on GitHub Merge pull request #1352 from numbboy/development - Clone with HTTPS (@ Use 55H

))]) Use Git or checkout with SWN using the web URL.
code-experiments A little more verbose error message when suite regression test fai

https://github.com/numbbo/coco.git @-
code-postprocessing Hashes are back on the plots.
code-preprocessing Fixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP
howtos Update create-a-suite-howto.md 4 months ago
clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago
hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago
AUTHORS small correction in AUTHORS 3 year ago
LICENSE Update LICENSE 11 months ago

README.md Added link to #1335 before dosing. a month ago

https://github.com/numbbo/coco

O numbbo/coco: Mumerical .. *

(D @ GitHub, Inc. (US] | https://github.com/numbbo/coco & €@ search

M

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

Numerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/

Add topics

{0 16,007 commits ¥ 11 branches > 31 releases AL 15 contributors

Branch: master + New pull request Create new file = Upload files = Find file Clone or download +

L") brockho committed on GitHub Merge pull request #1352 from numbbo/development - Clone with HTTPS 3 Use 55H

B)))) _ Use Git or checkout with 5¥N using the web URL.
B code-experiments A little more verbose error message when suite regression test fai

https://github.com/numbbo/coco.git @-
B code-postprocessing Hashes are back on the plots.
B code-preprocessing Fixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP
howtos Update create-a-suite-howto.md 4 months ago
£lang-format raising an error in bbob2009_logger.c when best_value is MULL. Plus s... 2 years ago
hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago
AUTHORS small correction in AUTHORS a year ago
LICEMSE Update LICEMNSE 11 months ago
README.md Added link to #1335 before dosing. a month ago

do.py refactoring here and there in do.py to get closer to PEPS specifications 2 months ago

doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 2 years ago

https://github.com/numbbo/coco

O numbbo/coco: Mumerical .. *

(i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':h ﬁ E ¥+ H

M

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

Branch: master = New pull request Create new file = Upload files = Find file Clone or download «

1"} brockho committed on GitHub Merge pull request #1352 from numbboy/development - Clone with HTTPS (@ Use 55H

))]) Use Git or checkout with SWN using the web URL.
code-experiments A little more verbose error message when suite regression test fai
https://github.com/numbbo/coco.git @-
code-postprocessing Hashes are back on the plots.

code-preprocessing Fixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP

howtos Update create-a-suite-howto.md 4 months ago

[iir7)

£lang-format raising an error in bbob2009_logger.c when best_value is MULL. Plus s... 2 years ago

[

hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago

[

AUTHORS small correction in AUTHORS a year ago

[T

LICENSE Update LICENSE 11 months ago

]

README.md Added link to #1335 before dosing. a month ago

[

do.py refactoring here and there in do.py to get closer to PEPS specifications 2 months ago

([}

doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 2 years ago

EE README.md

numbbo/coco: Comparing Continuous Optimizers

htts://ithub.com/numbbo/coc

[S=SFEEE)

O numbbo/coco: Mumerical .. *

\ , (i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Seur':h ﬁ E ¥+ H
Ei_; Most Visited @ Getting Started & COCO-Algorithms €)) numbbo/numbho - Gi.. RandOpt @ CMAP @ Inria GitLab T RER B from lab

B code-preprocessing Fixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP
howtos Update create-a-suite-howto.md 4 months ago E|
£lang-format raising an error in bbob2009_logger.c when best_value is MULL. Plus s... 2 years ago
hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago
AUTHORS small correction in AUTHORS a year ago
LICEMSE Update LICEMNSE 11 months ago
README.md Added link to #1335 before dosing. a month ago

do.py refactoring here and there in do.py to get closer to PEPS specifications 2 months ago

doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 2 years ago

EE README.md

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in ANSI € with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous
optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

® C/C++
® Java

® MATLAB/Octave

https://github.com/numbbo/coco

O numbbo/coco: Mumerical .. *
'fi;' & GitHub, Inc. (US) https://github.com/numbbo/coco [C?Sec'r':h

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab
LICENSE Update LICEMSE 11 months ago

README.md Added link to #1335 before closing. a month ago
do.py refactoring here and there in do.py to get closer to PEPS specifications 2 months ago

doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 2 years ago

EB README.md

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in ANSI C with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous
optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

® C/C++
Java
MATLAB/Octave

Python
Contributions to link further languages (including a better example in c++) are more than welcome.
For more information,

® read our benchmarking quidelines introduction

® read the COCO experimental setup description

https://github.com/numbbo/coco

(e e

O numbbo/coco: Mumerical .. *
(' | (i) @ GitHub, Inc, (US) https:y//github.com/numbbo/coco c €9 Search

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in AnsI ¢ with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous

optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

® C/C++
® Java

® MATLAB/Octave

er languages (including a better example in C++) are more than welcome.
For more information,

® read our benchmarking guidelines introduction
® read the COCO experimental setup description

® see the bbob-biobj and bbob-biobj-ext COCO multi-objective functions testbed documentation and the specificities

of the performance assessment for the bi-objective testbeds.
consult the BBOB workshops series,

consider to register here for news,

see the previous COCO home page here and

see the links below to learn more about the ideas behind CoCO.

htts://lthub com/numbbo/coco

\ 6 (i) @ GitHub, Inc. (US) https://github.com/numbbo/coco c C?Sec'r':h

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

0. Check out the Requirements above. req uireme nts
1. Download the COCO framework code from github, & d own I Oo4d d

® either by clicking the Download ZIP button and unzip the zip file,

® or by typing git clone https://github.com/numbbo/coco.git . This way allows to remain up-to-date easily (but needs
git to be installed). After cloning, git pull keeps the code up-to-date with the latest release.

The record of official releases can be found here. The latest release corresponds to the master branch as linked above.

2.In a system shell, cd into the coco or coco-<version> folder {framework root), where the file do.py can be found.
Type, i.e. execute, one of the following commands once

python do. run-c
python do. run-java
python do. run-matlab
python do. run-octave
python do. run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under code-experiments/build
/<language> (<language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall be post-processed, run

python do.py install-postprocessing

https://github. com/numbbo/coco

O numbbo/coco: Mumerical .. *
\ 6 (i) @ GitHub, Inc. (US) https://github.com/numbbo/coco c C?Sec'r':h
18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

Getting Started
0. Check out the Requirements above.

1. Download the COCO framework code from github,

® either by clicking the Download ZIP button and unzip the zip file,

® or by typing git clone https://github.com/numbbo/coco.git . This way allows to remain up-to-date easily (but needs
git to be installed). After cloning, git pull keeps the code up-to-date with the latest release.

The record of official releases can be found here. The latest release corresponds to the master branch as linked above.

2.In a system shell, cd into the coco or coco-<version> folder {framework root), where the file do.py can be found.
Type, i.e. execute, one of the following corg

python do.py run-c installation I: experiments

python do.py run-matlab

python do.py run-octave
python do.py run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under code-experiments/build
/<language> (<language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall be post-processed, run

python do.py install-postprocessing

https://github.com/numbbo/coco

O numbbo/coco: Mumerical .. *

\ 6 (i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':h ﬂ E ¥+ @

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab
example expenment once. he build result and the example expenment code can be found under code-experiments/build

/<language> (<language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall b

installation II: postprocessing

to (user-locally) install the post-processing. From here on,
builds to a new release.

4. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example_experiment.py . Run the example experiment (it already is compiled). As the details

vary, see the respective read-me’s and/or example experiment files:

c read me and example experiment
Java read me and example experiment
Matlab/Octave read me and example experiment

Python read me and example experiment

If the example experiment runs, connect your favorite algorithm to Coco: replace the call to the random search optimizer in
the example experiment file by a call to your algorithm (see above). Update the output result_folder , the algorithm_name

and algorithm_info of the observer options in the example experiment file.
Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

https://github.com/numbbo/coco

O numbbo/coco: Mumerical .. *

\ 6 (i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':h ﬂ E ¥+ @

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab
example expenment once. he build result and the example expenment code can be found under code-experiments/build

/<language> (<language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall be post-processed, run

python do.py install-postprocessing

to (user-locally) install the post-processing. From here on, do.py has done its job and is only needed again for updating the
builds to a new release.

4. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example_experiment.py . Run the example experiment (it already is compiled). As the details

see the respective read-me's and/or example experiment files:

c read me and example experiment

Java read me and example experiment

coupling algo + COCO

Matlab/Octave read me and example experiment

Python read me and example experiment

If the example experiment runs, connect your favorite algorithm to Coco: replace the call to the random search optimizer in
the example experiment file by a call to your algorithm (see above). Update the output result_folder , the algorithm_name

and algorithm_info of the observer options in the example experiment file.
Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

example_experiment.c (slightly simplified)

/* Iterate over all problems in the suite */
while ((PROBLEM = coco_suite get next problem(suite, observer)) != NULL)

{

size t dimension = coco_problem get dimension(PROBLEM) ;

/* Run the algorithm at least once */
for (run = 1; run <= 1 + INDEPENDENT RESTARTS; run++) {

size t evaluations_done = coco_problem get evaluations (PROBLEM) ;

long evaluations_ remaining =
(long) (dimension * BUDGET MULTIPLIER) - (long)evaluations_done;

if (... || (evaluations_remaining <= 0))
break;

my random search(evaluate function, dimension,
coco_problem get number of objectives (PROBLEM) ,
coco_problem get smallest values of interest (PROBLEM),
coco_problem get largest values of interest (PROBLEM),
(size_t) evaluations_remaining,
random generator) ;

. _____________d

O numbbo/coco at develop., *

(‘ j ':i:' & GitHub, Inc, (US) https://github.com/numbbo/coco/tree/development

|2 Most Visited @ Getting Started & COCO-Algorithms €} numbbo/numbbe - Gi... A RandOpt @ CMAP @ Inria Gitlab) RER B from lab
Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

6. Postprocess the data from the results folder by typing

python -m cocopp [-o OUTPUT_FOLDERNAME] YOURDA

running the experiment

Any subfolder in the folder arguments will be searched fo
different folders collected under a single "root” YOURDATAFOLDER folder. We can also compare more than one algorithm by

specifying several data result folders generated by different algorithms.

A folder, ppdata by default, will be generated, which contains all output from the post-processing, including an index.html
file, useful as main entry point to explore the result with a browser. Data might be overwritten, it is therefore useful to change
the output folder name with the -o OUTPUT_FOLDERNAME option.

A summary pdf can be produced via LaTeX. The corresponding templates can be found in the code-postprocessing/latex-
templates folder. Basic html output is also available in the result folder of the postprocessing (file
templateBBOBarticle.html).

7. Once your algorithm runs well, increase the budget in your experiment script, if necessary implement randomized
independent restarts, and follow the above steps successively until you are happy.

8. The experiments can be parallelized with any re-distribution of single problem instances to batches (see
example_experiment.py for an example). Each batch must write in a different target folder (this should happen
automatically). Results of each batch must be kept under their separate folder as is. These folders then must be

https://github.com/numbbo/coco

O numbbo/coco at develop., *
| é ':E:' & GitHub, Inc, (US) https://github.com/numbbo/coco/tree/development (6 C'?_‘Teer':r'l

|2 Most Visited @ Getting Started & COCO-Algorithms €} numbbo/numbbe - Gi... A RandOpt @ CMAP @ Inria Gitlab) RER B from lab
Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

6. Postprocess the data from the results folder b

python -m cocopp [-o OUTPUT_FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]

Any subfolder in the folder arguments will be searched for logged data. That is, experiments from different batches can be in
different folders collected under a single "root” YOURDATAFOLDER

specifying several data result folders generated by different algg

postprocessing

A folder, ppdata by default, will be generated, which contains 3
file, useful as main entry point to explore the result with a brows®
the output folder name with the -o OUTPUT_FOLDERNAME option.

A summary pdf can be produced via LaTeX. The corresponding templates can be found in the code-postprocessing/latex-
templates folder. Basic html output is also available in the result folder of the postprocessing (file
templateBBOBarticle.html).

7. Once your algorithm runs well, increase the budget in your experiment script, if necessary implement randomized
independent restarts, and follow the above steps successively until you are happy.

8. The experiments can be parallelized with any re-distribution of single problem instances to batches (see
example_experiment.py for an example). Each batch must write in a different target folder (this should happen
automatically). Results of each batch must be kept under their separate folder as is. These folders then must be

https://github. com/numbbo/coco

O numbbo/coco at develop..,
é (© & GitHub, Inc, (US) | https://github.com/numbbo/cocostree/development

|2 Most Visited @ Getting Started & COCO-Algorithms €} numbbo/numbbe - Gi... A RandOpt @ CMAP @ Inria Gitlab) RER B from lab
Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

6. Postprocess the data from the results folder b

new feature: data archive

python -m cocopp BFGS! BIPOP! 1lmm*

8. The experiments can be parallelized with any re-distribution of single problem instances to batches (see
example_experiment.py for an example). Each batch must write in a different target folder (this should happen
automatically). Results of each batch must be kept under their separate folder as is. These folders then must be

Result Folder

I

@ .‘ el <« data-archive » data » gecco-bbob-1-24 » 2009 » rawdata » ppdata » - |

Organize « Include in library « Share with = Mew folder : 1 &

~

i Mame Date modified Type Size

- Favorites
4. Downloads , BIPOP-CMA-ES_hansen_noiseless 03/06/2017 11:33 File folder
%# Dropbox | cocopp_commands.tex 03/06,/2017 11:33 LaTeX Docurnent
| Recent Places index.html 03/06,2017 11:33 Firefox HTML Doc...

B [Cesktop
J IntelGraphicsProfiles

=

L]
|€| ppdata.htrnl 03/06/2017 11:33 Firefox HTML Doc...

. Libraries
3 Documents Select a file
Git to preview,
J"- Music
b=| Pictures

Subversion

B videos

f% Homegroup

(M Computer
- -
F -2 L VY U — LR Y

4 items State: 3% Shared

Automatically Generated Results

Post processing results

(- | ':i:' file:/// T/ Users/dimo/Desktop/coco/BBOB/ data-archive/data/gecco-bbob-1-24,/2009, [Q, Search

[2) Most Visited @ Getting Started & COCO-Algorithms €) numbbo/numbbe - Gi... [RandOpt @ CMAP @ Inria GitLlab) RER B from lab

Post processing results

Single algorithm data

BIPOP-CMA-ES hansen noiseless

Automatically Generated Results

BIPOP-CMA-ES, templateBBOB... *

é (i) file:///C:/Users/dimo/Desktop/coco/BBOB/ data-archive/data/gecco-bbob-1-24/2009, c Q, Search

[2) Most Visited @ Getting Started & COCO-Algorithms €) numbbo/numbbe - Gi... [RandOpt @ CMAP @ Inria GitLlab) RER B from lab

Home

Runtime distributions (ECDFs) per function

Runtime distributions (ECDFs) summary and function groups

Scaling with dimension for selected targets

Tables for selected targets

Runtime distribution for selected targets and f-distributions

Runtime loss ratios

Runtime distributions (ECDFs) over all targets

u
=
o
o
4=
@
E\
o
i
-+
-
=]
]
-
o

|bbob - f1-f24
51 targets in 10
115 instances

Automatically Generated Results

ppridmany

| € | () filey///C:/Users/dimo/Desktop/coco/BBOB/ data-archive/data/gecco-bbob-1-24/2009, @ || Q Search S al:=| 3 #

[2) Most Visited @ Getting Started & COCO-Algorithms €) numbbo/numbbe - Gi... [RandOpt @ CMAP @ Inria GitLlab) RER B from lab

Overview page

Runtime distributions (ECDFs) per function

irs

1 Sphere ! 4 Skew Rastrigin-Bueche separ
bbb - 14 kg , 4o
51 targets in 100 1e:08

15 instances

=
=]

im 100 1008 51 targets in 104

0.8 115 instances !

51 targats |
0.8/ 15 instanc

=
o

=
™

2
-
=
-
=
-

=
=
=]

=
=]

5
@
@
=4
a
+
=
3
H
¥
5
=
2
g
2
-8

Proportion of Tunctien+tanget pairs
(=]
2 4
Pragartian of function+targat pairs
Pragartian of Tunction+target pa

2 4 b
laglD of (# fevals [dirmens
5 Linear slope

51 targats

0.8/ 15 instanc 0.8

=
S

I
I
l[l'u-a-:r
| |
e s ! cl"ﬂ'cl-l} -:I'HU-D
4 [[8 8
lagl0 of (# T-evals difmens 10910 of {# f-evals / dimensi ion) ien)
10 Ellipsoid

=
Pl

Pragartion of function+targst pairs
2

o
oy

Pragartian of function+targat pairs

Pragartion of function+target pairs

Preportion of Tunctien+tanget pairs

1.0 ook - 110
51 targats |

0.8/ 15 instance! 0.5 15 instances

=
2
-
=
i

=
ra
2
=
ra

=
=]

=
=]
o

2

2 4 a
laglD of (# f-evals § dirmension)
16 Weierstrass

Pragartian of function+targst p-aurs
o
oy
Priapom.an af jrun:hf:-nﬂalr\get pairs
Pragartian of Tunchc:nna.r\ge(pairs

Preportion of Tunctien+tanget pairs

rs
Eirs
airs

Automatically Generated Results

ppfigdim

é (i) file:///C:/Users/dimo/Desktop/coco/BBOB/ data-archive/data/gecco-bbob-1-24/2009,

c Q, Search

[2) Most Visited @ Getting Started & COCO-Algorithms €) numbbo/numbbe - Gi... [RandOpt @ CMAP @ Inria GitLlab) RER B from lab

Overview page

Average number of f~evaluations to reach target

1 Sphere

2 Ellipsoid separable

15 instances
0 Rhoolute targets

3 Rastrigin separable

4 Skew Rastrigin-Bueche separ

p.4 . 4 et

¢

15 instances
() shschue targets

5 Linear slope

10 20
& Attractive sector

() A3 instances
buute argats

2 3 5 10 20
7 Step-ellipscid

15 instances
0 wheoliite tErgets

4]

20

mstances
Banlite tangats

40 2 3 5 10 20
9 Rosenbrock rotated

15 instances
0 wiheolite tErgets

10 Ellipsoid

15 instances
4] mhsclits targets

2 3 5 10 20
11 Discus

15 instances
0 Bbsiite targats

40 2 3 5 10 20
12 Bent cigar

15 instances
0 wheoliite tErgets

5
4
3
2
1
0

2 3 5 10 20
13 Sharp ridge

3 nstances
mbsalute targets

2 3 5 10 20 40
14 sum of different powers

3 5 10 20

15 Rastrigin

15 instances
0 hisoite argats

2 3 5 10 20
16 Weierstrass

40 2 3 5 10 20

40

17 Schaffer F7, condition 10

2 3 5 10 20

18 Schaffer F7, condition 1000

20 40
19 Griewank-Rosenbrock FEF2

i 5 10 20

20 Schwefel x*sin(x)

doesn't look too complicated, does it?

[the devil is in the details ©]

so far (i.e. incl. BBOB-2018):

data for 200+ algorithm variants
(some of which on noisy or multiobjective test functions)
136 workshop papers
by 101 authors from 28 countries

Measuring Performance

On

* real world problems
* expensive
* comparison typically limited to certain domains
e experts have limited interest to publish

 "artificial" benchmark functions
* cheap
e controlled
* data acquisition is comparatively easy
* problem of representativeness

Test Functions

define the "scientific question”
the relevance can hardly be overestimated
should represent "reality"
are often too simple?
remind separability
account for invariance properties

prediction of performance is based on “similarity”,
ideally equivalence classes of functions

Available Test Suites in COCO

* bbob 24 noiseless fcts 180+ algo data sets
* bbob-noisy 30 noisy fcts 40+ algo data sets
* bbob-biobj 55 bi-objective fcts 16 algo data sets

Almost finished:
» extended bi-objective suite (bbob-biobj-ext)
* large-scale version of bbob (bbob-largescale)

Under development/in planning phase:
e constrained test suite (bbob-constrained)
* mixed-integer suite

* real-world problems
(see also the game benchmarking workshop)

How Do We Measure Performance?

Meaningful quantitative measure
e guantitative on the ratio scale (highest possible)

"algo A is two times better than algo B" is a meaningful statement
e assume a wide range of values

* meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

runtime or first hitting time is the prime candidate
(we don't have many choices anyway)

Measuring Performance Empirically

convergence graphs is all we have to start with...

get

fixed bud

quality indicator (to be minimized)

T ——— = — -5 B
|f
... 1:................... e e e e e
i
i
!
i
'i

number of function evaluations

ECDF:
Empirical Cumulative Distribution Function of the Runtime
[aka data profile]

A Convergence Graph .

110

100

90

80

function value

70

60

2 3 4
log,,(function evaluations)

First Hitting Time is Monotonous

110

100L _______________ — S —_—_ _—

o0 M

function value

o R N — .

7 - — — S N — — -

60

log,,(function evaluations)

15 Runs

2n|eA uonouny

3
log,,(function evaluations)

2

15 Runs £ 15 Runtime Data Points

110 gy

100+

90+

80+

function value

70¢F

60

r 2 3
log,,(function evaluations)

Empirical Cumulative Distribution

110 pymryy the of run
lengths to reach
100k N the target
. . has for each
2 gl DA data point a
> PR vertical step of
0 5 5 5 constant size
= . displays for each
A\ ; ; x-value (budget)
“ " observations to
60 the left (first

2 | | - hitting times)
log,o(function evaluations)

e.g. 60% of the runs need between 2000 and 4000 evaluations
80% of the runs reached the target

Reconstructing A Single Run

110

oof N

90+

function value

o —— N — .

60

T 2 3 4
log,,(function evaluations)

Reconstructing A Single Run

50 equally
spaced targets

function value

log,,(function evaluations)

Reconstructing A Single Run

110py—

oo} o

YA k" T

function value

o 3 N — .

7 - — — S 3 — — -

60

T 2 3 4
log,,(function evaluations)

Reconstructing A Single Run

110 pv—

oo N\

o90}f -

function value

gof — F— - S— F———

) (S

60 ookl kA

=) 10 A ekt SRRl e R R

Reconstructing A Single Run

110 pv—

e
makes a step for
each star, is
monotonous
and displays for
each budget the
fraction of
targets achieved
within the
budget

function value

Reconstructing A Single Run

110

the ECDF recovers
the monotonous
graph,
discretised and
flipped

function value

o) NS - SO S SN N SRS RN S

60

T 2 3 4
log,o(function evaluations)

Reconstructing A Single Run

110

function value

60

sob]

w L

the ECDF recovers
the monotonous
graph,
discretised and
flipped

2 3 4
log,o(function evaluations)

Aggregation

110 s

100

90

80

function value

70

60

15 runs

log,,(function evaluations)

Aggregation

110
15 runs
100 50 targets
v i :l..-".;'_::i:!f:: e
=3 AN — -~
© 90 = ATESTER
-
c
S
E 80
=
70
007 > 3 g

log,,(function evaluations)

Aggregation

110 g

100+

function value

70¢F

60

90+

80+

log,o(function evaluations)

15 runs

50 targets

Aggregation

110 g

100+

function value

70¢F

60

90+

80+

log,o(function evaluations)

15 runs

50 targets

Aggregation

110 gy

100

80

function value

70

60

- ,
[(N -r
\/ v

log,o(function evaluations)

50 targets from

15 runs

...integrated in a
single graph

Interpretation

110 gy
' 50 targets from
Lool .15 runs
integrated in a
g single graph
o 90+
=
c
S
O 8ot
E
. a | AVErage log runtime
WINEWY (or geometric avg.

60 i 5 i L e - runtime) over all
targets (difficult and

log,o(function evaluations)
easy) and all runs

Fixed-target: Measuring Runtime

ps(Algo A) << 1, fast convergence

Dy (A.lgo B) ~ 1, slow convergence

Fixed-target: Measuring Runtime

e Algo Restart A:

p,(Algo Restart A) = 1

 Algo Restart B:

p,(Algo Restart A) = 1

Fixed-target: Measuring Runtime

* Expected running time of the restarted algorithm:

1-p
E[RTT] — D - E[RTunsuccessful] + E[RTsuccessful]
S

e Estimator average running time (aRT):

__ #successes
Ps =

#runs

RT,,,succ = Average evals of unsuccessful runs

RT, .. = Average evals of successful runs

total #evals

aRT =
#successes

ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated restarted
algorithms:

.. 15phere/Sphere
bbob:biobj + f1 | | | 375
10 instances | | | |

=
o

O
0o

O
)

o
N

Proportion of function+target pairs

4 5 6 71 8
loal0 of (# f-evals / dimension)

0 1 2

Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

* never aggregate over dimension
* but often over targets and functions

* can show data of more than 1 algorithm at a time
1.0

t pairs

150 algorithms
from BBOB-2009
till BBOB-2015

Proporti

loal0 of (# f-evals / dimension)

More Automated Plots...

..but no time to explain them here ®

1 Sphere/Sphere

—.— DEMO . -~
1t + GA- MULTIOBJ(NSGAuH)

HMO-CMA-ES

010 10, 10 |nstances -

2

3

5

10

= o =
I o o0

ot
N

roportion of function+target pairs

13 sep;}EIIipsoi‘d/Rosen‘brock

g:

bbob bIObJ f1, f2 f11 |
10 |n$tances ' :

10.0.79711
1 1

ﬁ

loal0 of (# f-evals / dimension)

1 2 3 4 5 6 7 8

More Automated Plots...

10! ! ‘ ‘ ‘ ‘ ‘ !
10°
..butnotimet _|
7. 1 Sphere/Sph 5 100 sep. Ellipsoid/Rosenbrock
£ =4 4
Y It SO A SR = 103
10
S 1 ‘
105 2 il ;0 0(‘]1',9"1 ;2 ;3 ;4
10 10 10 10 10 10 10
9 number of function evaluations / dimension
8
£9
° 1 Sphere/Sphere
6
G 2-D ' ’
@ > ISR L S S A N S
) 3- !
(U] :
4 :
@ 5-D
Eoic I © JESC. N7« 5 K S N R S I s =gy, b~ I I S S 1
S S 10-D
~ 2} Ic_c ;
©
—
—
|_
o
L
o
: ; Eo.o.mné i i —
o2 S e s e 8o
loal0 of (# f-evals / dimensic ~ ~ 3) 1

T AN Al Fm g =)

and now?

BBOB-2018

Session Sunday 15th of July, 2018 - Training Room 1 (2F)
oelel e The BBOBies: A Short Introduction to COCO and BBOB

Kouhei Nishida* and Youhei Akimoto: Benchmarking the PSA-CMA-ES on the BBOB
09:45 - 10:05]
Noiseless Testbed

Duc Manh Nguyen: Benchmarking a Variant of the CMAES-APOP on the BBOB Noiseless
10:05 - 10:25 Testbed

Aurore Blelly, Matheus Felipe-Gomes, Anne Auger, and Dimo Brockhoff*: Stopping
i Criteria, Initialization, and Implementations of BFGS and their Effect on the BBOB Test
Suite

Aljosa Vodopija, Tea TuSar™, Bogdan Filipi¢: Comparing Black-Box Differential Evolution
10:40 - 11:00 A . .
and Classic Differential Evolution

L S The BBOBies: Workshop Wrapup and Discussion

http://coco.gforge.inria.fr/

J': {Z start [COmparing Continu... X\+

(€

.

coco.gforgeinniafr [&

E] Most Visited @0 Getting Started r'{ algorithms [COmparin... O numbbo/numbbo - Gi...

[[start]]

[@, Show pagesource [] Old revisions

COCO (COmparing Continuous Optimisers)
is a platform for systematic and sound

— T T)
comparisons of real-parameter global - __mngnn?]r&
optimisers. COCO provides benchmark e ; __,t':".é',;fc"‘(“ -

I function testbeds, experimentation _,/E"Efﬁm
templates which are easy to parallelize, H 4'—';_—'% A S
and tools for processing and wvisualizing E‘O-G \ygol-ﬂt [Han)
data generated by one or several 3 % Egt\-:i 5

— A (Doe)
optimizers. The COCO platform has been im \ i g
used for the Black-Box-Optimization- - AN t‘-}gsﬂm
Benchmarking (BBOB) workshops that took N\ Rosenbrock
place during the GECCO conference in b \:"E.?.f.ﬁ
2009, 2010, 2012, 2013 and 2015. It was . Inecy

o G
also used at the IEEE Congress on an * Mohte gario
" $ ' 16"

Evolutionary Computation (CEC'2015) in 10° 1t ﬁmi“;]im}:mmil:: ke
Sendai, Japan. The COCO source code is
available at the downloads page.

= @) Black-Box Optimization Benchmarking {BBOB) 2016

m Black-Box Optimization Benchmarking (BBOB) 2015

®m CEC'2015 special session on Black-Box Optimization Benchmarking (CEC-BBOB 2013)
m Black-Box Optimization Benchmarking (BBOB) 2013

® Black-Box Optimization Benchmarking (BBOB) 2012

m Black-Box Optimization Benchmarking (BBOB) 2010

m Black-Box Optimization Benchmarking (BBOB) 2009

m Downloads and documentations

To subscribe to (or unsubscribe from) the bbob discussion mailing list follow this link @ http://lists.Iri.fr
[Jcgi-bin/mailman/listinfo/bbob- discuss .

To receive announcements related to the BBOB workshops simply send an email to BBOB team

COMPARING CONTINUOUS OPTIMISERS: COCO

[&] Recent changes @} Sitemap @ Login

1 (24,24, 24, 24,24, 24,24, 24,24, 14, 24, 24, 24, 24, 24, 24, 14, 14, 24, 74, 24, 24

m

Search

Navigation

u Home
= @ Documentation
B download latest old code
= @ new code homepage
= @ download new code
directly
@sBBoB 2016
BBOB 2015 @ GECCO
m Algorithms
m Results
m Schedule
m Downloads
m BBOB 2015 @ CEC
m Algorithms
® Results
m Downloads
BBOB 2013
= Algorithms
m Results
m Schedule
® Downloads
BBOB 2012
® Algorithms
m Results
= Downloads
= BBOB 2010

® Results

m Downloads -

