
8th GECCO Workshop on
Blackbox Optimization Benchmarking (BBOB):

Welcome and Introduction to COCO/BBOB

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

GECCO '14, Jul 12-16 2014, Vancouver, BC, Canada

ACM 978-1-4503-2881-4/14/07.

http://dx.doi.org/10.1145/2598394.2605339

The BBOBies
https://github.com/numbbo/coco

slides based on previous ones by A. Auger, N. Hansen, and D. Brockhoff

challenging optimization problems
appear in many

scientific, technological and industrial domains

challenging optimization problems
appear in many

scientific, technological and industrial domains

Optimize 𝑓: Ω ⊂ ℝ𝑛 ↦ ℝ𝑘

derivatives not available or not useful

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Numerical Blackbox Optimization

Given:

Not clear:

which of the many algorithms should I use on my problem?

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Practical Blackbox Optimization

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder & Mead 1965]
Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)
• Differential Evolution [Storn & Price 1997]
• Particle Swarm Optimization [Kennedy & Eberhart 1995]
• Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen & Ostermeier 2001]
• Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002]
• Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
• Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]
Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder & Mead 1965]
Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)
• Differential Evolution [Storn & Price 1997]
• Particle Swarm Optimization [Kennedy & Eberhart 1995]
• Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen & Ostermeier 2001]
• Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002]
• Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
• Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]
Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

• choice typically not immediately clear
• although practitioners have knowledge about which

difficulties their problem has (e.g. multi-modality, non-
separability, ...)

Numerical Blackbox Optimizers

• understanding of algorithms

• algorithm selection

• putting algorithms to a standardized test
• simplify judgement

• simplify comparison

• regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

• choosing (and implementing) problems, performance
measures, visualization, stat. tests, ...

• running a set of algorithms

Need: Benchmarking

that's where COCO and BBOB come into play

Comparing Continuous Optimizers Platform

https://github.com/numbbo/coco

automatized benchmarking

How to benchmark algorithms with COCO?

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

requirements
& download

requirements
& download

https://github.com/numbbo/coco

installation I: experimentsinstallation I: experiments

https://github.com/numbbo/coco

installation II: postprocessinginstallation II: postprocessing

https://github.com/numbbo/coco

coupling algo + COCOcoupling algo + COCO

https://github.com/numbbo/coco

example_experiment.c (slightly simplified)

/* Iterate over all problems in the suite */

while ((PROBLEM = coco_suite_get_next_problem(suite, observer)) != NULL)

{

size_t dimension = coco_problem_get_dimension(PROBLEM);

/* Run the algorithm at least once */

for (run = 1; run <= 1 + INDEPENDENT_RESTARTS; run++) {

size_t evaluations_done = coco_problem_get_evaluations(PROBLEM);

long evaluations_remaining =

(long)(dimension * BUDGET_MULTIPLIER) – (long)evaluations_done;

if (... || (evaluations_remaining <= 0))

break;

my_random_search(evaluate_function, dimension,

coco_problem_get_number_of_objectives(PROBLEM),

coco_problem_get_smallest_values_of_interest(PROBLEM),

coco_problem_get_largest_values_of_interest(PROBLEM),

(size_t) evaluations_remaining,

random_generator);

}

running the experimentrunning the experiment

https://github.com/numbbo/coco

postprocessingpostprocessing

https://github.com/numbbo/coco

new feature: data archive

python –m cocopp BFGS! BIPOP! lmm*

new feature: data archive

python –m cocopp BFGS! BIPOP! lmm*

Result Folder

Automatically Generated Results

Automatically Generated Results

Automatically Generated Results

Automatically Generated Results

doesn't look too complicated, does it?

[the devil is in the details]

so far (i.e. incl. BBOB-2018):

data for 200+ algorithm variants

(some of which on noisy or multiobjective test functions)

136 workshop papers

by 101 authors from 28 countries

On

• real world problems
• expensive

• comparison typically limited to certain domains

• experts have limited interest to publish

• "artificial" benchmark functions
• cheap

• controlled

• data acquisition is comparatively easy

• problem of representativeness

Measuring Performance

• define the "scientific question"

the relevance can hardly be overestimated

• should represent "reality"

• are often too simple?

remind separability

• account for invariance properties

prediction of performance is based on “similarity”,
ideally equivalence classes of functions

Test Functions

Available Test Suites in COCO
• bbob 24 noiseless fcts 180+ algo data sets

• bbob-noisy 30 noisy fcts 40+ algo data sets

• bbob-biobj 55 bi-objective fcts 16 algo data sets

Almost finished:

• extended bi-objective suite (bbob-biobj-ext)

• large-scale version of bbob (bbob-largescale)

Under development/in planning phase:

• constrained test suite (bbob-constrained)

• mixed-integer suite

• real-world problems
(see also the game benchmarking workshop)

Meaningful quantitative measure
• quantitative on the ratio scale (highest possible)

"algo A is two times better than algo B" is a meaningful statement

• assume a wide range of values

• meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

How Do We Measure Performance?

runtime or first hitting time is the prime candidate
(we don't have many choices anyway)

convergence graphs is all we have to start with...

Measuring Performance Empirically

ECDF:

Empirical Cumulative Distribution Function of the Runtime

[aka data profile]

A Convergence Graph
A Convergence Graph

First Hitting Time is Monotonous

15 Runs

target

15 Runs ≤ 15 Runtime Data Points

Empirical CDF
1

0.8

0.6

0.4

0.2

0

the ECDF of run
lengths to reach
the target

● has for each
data point a
vertical step of
constant size

● displays for each
x-value (budget)
the count of
observations to
the left (first
hitting times)

Empirical Cumulative Distribution

e.g. 60% of the runs need between 2000 and 4000 evaluations
e.g. 80% of the runs reached the target

Reconstructing A Single Run

50 equally
spaced targets

Reconstructing A Single Run

Reconstructing A Single Run

Reconstructing A Single Run

the empirical CDF
makes a step for
each star, is
monotonous
and displays for
each budget the
fraction of
targets achieved
within the
budget

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

the ECDF recovers
the monotonous
graph,
discretised and
flipped

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

the ECDF recovers
the monotonous
graph,
discretised and
flipped

15 runs

Aggregation

15 runs

50 targets

Aggregation

15 runs

50 targets

Aggregation

15 runs

50 targets

ECDF with 750
steps

Aggregation

50 targets from
15 runs

...integrated in a
single graph

Aggregation

area over the ECDF
curve

=
average log runtime

(or geometric avg.
runtime) over all

targets (difficult and
easy) and all runs

50 targets from
15 runs
integrated in a
single graph

Interpretation

Fixed-target: Measuring Runtime

Fixed-target: Measuring Runtime

• Algo Restart A:

• Algo Restart B:

𝑹𝑻𝑨
𝒓

ps(Algo Restart A) = 1

𝑹𝑻𝑩
𝒓

ps(Algo Restart A) = 1

Fixed-target: Measuring Runtime

• Expected running time of the restarted algorithm:

𝐸 𝑅𝑇𝑟 =
1 − 𝑝𝑠
𝑝𝑠
𝐸 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 + 𝐸[𝑅𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙]

• Estimator average running time (aRT):

 𝑝𝑠 =
#successes

#runs

 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐 = Average evals of unsuccessful runs

 𝑅𝑇𝑠𝑢𝑐𝑐 = Average evals of successful runs

𝑎𝑅𝑇 =
total #evals

#successes

ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated restarted
algorithms:

Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

• never aggregate over dimension

• but often over targets and functions

• can show data of more than 1 algorithm at a time

150 algorithms
from BBOB-2009

till BBOB-2015

150 algorithms
from BBOB-2009

till BBOB-2015

...but no time to explain them here

More Automated Plots...

...but no time to explain them here

More Automated Plots...

and now?

BBOB-2018
Session Sunday 15th of July, 2018 - Training Room 1 (2F)

09:30 - 09:45 The BBOBies: A Short Introduction to COCO and BBOB

09:45 - 10:05
Kouhei Nishida* and Youhei Akimoto: Benchmarking the PSA-CMA-ES on the BBOB

Noiseless Testbed

10:05 - 10:25
Duc Manh Nguyen: Benchmarking a Variant of the CMAES-APOP on the BBOB Noiseless

Testbed

10:25 – 10:40

Aurore Blelly, Matheus Felipe-Gomes, Anne Auger, and Dimo Brockhoff*: Stopping

Criteria, Initialization, and Implementations of BFGS and their Effect on the BBOB Test

Suite

10:40 - 11:00
Aljoša Vodopija, Tea Tušar*, Bogdan Filipič: Comparing Black-Box Differential Evolution

and Classic Differential Evolution

11:00 - 11:10 The BBOBies: Workshop Wrapup and Discussion

http://coco.gforge.inria.fr/

