Self-adaptive Search Equation-Based Artificial Bee Colony Algorithm with CMA-ES on the Noiseless BBOB Testbed

Doğan Aydın, Gürcan Yavuz

Dumlupinar University, Computer Engineering Department, Turkey

July 19, 2017

Aydın and Yavuz (Dumlupınar University)

GECCO 2017 BBOB Workshop

July 19, 2017 1 / 16

Outline

SSEABC Algorithm

- Artificial Bee Colony Algorithm Framework
- Proposed Modifications on ABC
- Generalized search equation

Experimental Results

- CEC Competition Results
- Noiseless BBOB testbed results

3 Discussion

🕽 Thanks

Pseudo-code of The ABC framework

- 1: Step 1. Initialization
- 2: while termination condition is not met do
- 3: Step 2. Employed Bees Step
- 4: Step 3. Calculate Selection Probabilities
- 5: Step 4. Onlooker Bees Step
- 6: Step 5. Scout Bees Step
- 7: Step 6. Apply Local Search (Optional)
- 8: Step 7. Apply Population Strategy (Optional)
- 9: end while

Most Effective Components in ABC Framework

Components

- Search equation in Employed Bees and Onlooker Bees steps
- Local search strategy
- Population strategy

Aydın, D. (2015). Composite artificial bee colony algorithms: From component-based analysis to high-performing algorithms. Applied Soft Computing, 32, 266-285.

Improvements introduced by the SSEABC algorithm

For Employed Bees and Onlooker Bees Steps

Self-adaptive search equation selection

For Local Search Different local search procedures

For Population Size

Incremental population size strategy

Aydın and Yavuz (Dumlupınar University

GECCO 2017 BBOB Workshop

July 19, 2017 5 / 16

Population Size Strategy

- In SSEABC algorithm, three population size strategy are implemented: fix, incremental and dynamic population size strategies
- In this work, we only used incremental population strategy which is better than the others
- In incremental population size strategy, a new agent is added to the population by

$$\dot{x}_{new,j} = x_{new,j} + \varphi_{i,j} (x_{Gbest,j} - x_{new,j})$$
(1)

Local Search Strategy

Aydın and Yavuz (Dumlupınar University)

GECCO 2017 BBOB Workshop

July 19, 2017 7 / 16

General form of generate search equation

Standard Search Equation

$$v_{i,j} = x_{i,j} + \phi_{i,j}(x_{i,j} - x_{r1,j})$$
(2)

Generalized Search Equation (GSE)

```
for t = 1 to m do

2: select random dimension j (1 \le j \le D)

x_{i,j} = term_1 + term_2 + term_3 + term_4

4: end for
```

Aydın and Yavuz (Dumlupınar University)

Vers. I (2016): Component alternatives in GSE

Table: Alternative options for each component in the generalized search equation. ϕ_1 , ϕ_1 and ϕ_1 can take two possible ranges: [-1, -1] and [-SF, SF] where SF is randomly selected positive real value. These ranges are decided randomly while creating each component of each randomly generated search equation.

т	term1	term2	term3	term4	
1	x _{i,j}	$\phi 1(x_{i,j}-x_{G,j})$	$\phi 2(x_{i,j}-x_{G,j})$	ϕ 3 $(x_{i,j} - x_{G,j})$	
$k (1 \leq k \leq D)$	x _{G,j}	$\phi 1(x_{i,j}-x_{r1,j})$	$\phi 2(x_{i,j}-x_{r1,j})$	ϕ 3 $(x_{i,j} - x_{r1,j})$	
$[t,k] \ (1 \leq t < k \leq D)$	$x_{r1,j}$	$\phi 1(x_{G,j} - x_{r1,j})$	$\phi 2(x_{G,j}-x_{r1,j})$	$\phi \Im (x_{G,j} - x_{r1,j})$	
		$\phi 1(x_{r1,j}-x_{r2,j})$	$\phi^2(x_{r1,j} - x_{r2,j})$	$\phi \Im (x_{r1,j} - x_{r2,j})$	
		$\phi 1(x_{i,j} - x_{GD,j})$	$\phi 2(x_{i,j} - x_{GD,j})$	ϕ 3($x_{i,j} - x_{GD,j}$)	
		do not use	do not use	do not use	

Vers. II (2017): Component alternatives in GSE

Table: Alternative options for each component in the generalized search equation. ϕ_1 , ϕ_1 and ϕ_1 can take two possible ranges: [-1, -1] and [-SF, SF] where SF is randomly selected positive real value. These ranges are decided randomly while creating each component of each randomly generated search equation.

т	term1	term2	term3	term4	
1	x _{i,i}	$\phi 1(x_{i,i} - x_{G,i})$	$\phi 2(x_{i,i} - x_{G,i})$	ϕ 3 $(x_{i,i} - x_{G,i})$	
$k \ (1 \leq k \leq D)$	×G,j	$\phi 1(x_{i,j} - x_{r1,j})$	$\phi 2(x_{i,j} - x_{r1,j})$	$\phi 3(x_{i,j} - x_{r1,j})$	
$[t,k] (1 \le t < k \le D)$	×r1.j	$\phi 1(x_{G,i} - x_{r1,i})$	$\phi 2(x_{G,i} - x_{r1,i})$	$\phi 3(x_{G,i} - x_{r1,i})$	
	-	$\phi 1(x_{r1,j} - x_{r2,j})$	$\phi 2(x_{r1,j} - x_{r2,j})$	$\phi 3(x_{r1,j} - x_{r2,j})$	
		$\phi 1(x_{i,j} - x_{GD,j})$	$\phi 2(x_{i,j} - x_{GD,j})$	$\phi 3(x_{i,j} - x_{GD,j})$	
		$\phi 1(x_{i,j} - x_{SC,j})$	$\phi 2(x_{i,j} - x_{SC,j})$	$\phi 3(x_{i,j} - x_{SC,j})$	
		$\phi 1(x_{i,j} - x_{MD,j})$	$\phi 2(x_{i,j} - x_{MD,j})$	$\phi 3(x_{i,j} - x_{MD,j})$	
		$\phi 1(x_{i,j} - x_{WO,j})$	$\phi 2(x_{i,j} - x_{WO,j})$	$\phi 3(x_{i,j} - x_{WO,j})$	
		$\phi 1(x_{SC,j} - x_{MD,j})$	$\phi_2(x_{SC,j} - x_{MD,j})$	$\phi 3(x_{SC,j} - x_{MD,j})$	
		$\phi 1(x_{MD,j} - x_{WO,j})$	$\phi 2(x_{MD,j} - x_{WO,j})$	$\phi 3(x_{MD,j} - x_{WO,j})$	
		$\phi 1(x_{G,j} - x_{WO,j})$	$\phi 2(x_{G,j} - x_{WO,j})$	$\phi 3(x_{G,j} - x_{WO,j})$	
		$\phi 1(x_{r1,j} - x_{MD,j})$	$\phi 2(x_{r1,j} - x_{MD,j})$	$\phi 3(x_{r1,j} - x_{MD,j})$	
		$\phi 1(x_{G,j} - x_{MD,j})$	$\phi 2(x_{G,j} - x_{MD,j})$	$\phi 3(x_{G,j} - x_{MD,j})$	
		$\phi 1(x_{r1,j} - x_{WO,j})$	$\phi 2(x_{r1,j} - x_{WO,j})$	$\phi 3(x_{r1,j} - x_{WO,j})$	
		$\phi 1(x_{SC,j} - x_{r1,j})$	$\phi 2(x_{SC,j} - x_{r1,j})$	$\phi 3(x_{SC,j} - x_{r1,j})$	
		$\phi 1(x_{i,j} - x_{AVE,j})$	$\phi 2(x_{i,j} - x_{AVE,j})$	$\phi 3(x_{i,j} - x_{AVE,j})$	
		$\phi 1(x_{r1,j} - x_{AVE,j})$	$\phi 2(x_{r1,j} - x_{AVE,j})$	$\phi 3(x_{r1,j} - x_{AVE,j})$	
		$\phi 1(x_{G,j} - x_{AVE,j})$	$\phi 2(x_{G,j} - x_{AVE,j})$	$\phi 3(x_{G,j} - x_{AVE,j})$	
		do not use	do not use	_donot_use	

Aydın and Yavuz (Dumlupınar University)

GECCO 2017 BBOB Workshop

July 19, 2017 10 / 16

Search Equation Pool

Aydın and Yavuz (Dumlupınar University)

GECCO 2017 BBOB Workshop

July 19, 2017 11 / 16

э

(日) (同) (三) (三)

SSEABC (Version I) in CEC'16 Competition

	UMOEASII	ILSHADE	SSEABC	I SHADE EnSin	AEPDIADE	SHADF4	SHADF44	SPMGTLO	MCSHADE
	Childhibh		bblitbe	Lorn to L_tpom		DIL IDL'I	DINEDLIN	51.110120	
D=10	1.4440E+03	1.9776E-03	2.1054E+03	1.5056E+03	2.1676E+03	1.8347E+03	1.9068E+03	8.6436E+04	1.9588E+03
				1					
D=30	4.3771E+03	5.32412+03	7.6832E+03	3 1753E+03	8.3564E+03	1.7657E+04	5.9737E+03	2.2819E+06	1.0612E+04
D=50	1.5920E+04	1.8028E+04	1.9148E+04	5.8812E+03	4.4215E+04	1.6548E+05	2.1970E+04	3.8722E+07	4.5461E+04
D=100	2.9613E+04	2.23371+05	3.0626E+04	3.3286E+04	2.7705E+05	7.7942E+05	3.7566E+05	1.1019E+08	1.9618E+05
Total				1					
Score	5.1354E+04	2.4870E+15	5.9563E+04	4.3848E+04	3.3179E+05	9.6440E+05	4.0551E+05	1.5128E+08	2.5421E+05
Rank	2	4	3	1	6	8	7	9	5

Best
Second
Third

3 N 3

Aydın and Yavuz (Dumlupınar University)

GECCO 2017 BBOB Workshop

July 19, 2017 12 / 16

SSEABC (Version I and II) in CEC'17 Competition

-	Best		Me	dian	Mean		
Func.	SSEABCv2	SSEAB Cv1	SSEABCv2	SSEABCv1	SSEABCv2	SSEABCv1	
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
3	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
4	5.675E-01	0.000E+00	5.856E+01	5.856E+01	5.107E+01	4.310E+01	
5	0.000E+00	0.000E+00	2.985E+00	2.985E+00	3.144E+00	3.473E+00	
6	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
7	3.262E+01	4.252E+01	3.416E+01	5.515E+01	3.466E+01	5.576E+01	
8	0.000E+00	0.000E+00	2.985E+00	3.980E+00	2.692E+00	3.765E+00	
9	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
10	1.243E+02	1.134E+01	9.107E+02	1.843E+03	9.291E+02	1.687E+03	
11	1.442E+00	9.950E-01	6.651E+00	2.619E+01	1.241E+01	2.967E+01	
12	2.485E+02	2.572E+02	1.243E+03	1.261E+03	1.233E+03	1.225E+03	
13	3.080E+00	1.983E+01	2.251E+01	9.771E+01	4.865E+01	1.958E+02	
14	6.773E+01	6.378E+01	1.205E+02	1.215E+02	1.184E+02	1.267E+02	
15	7.517E+00	2.355E+01	9.686E+01	1.386E+02	1.167E+02	1.703E+02	
16	3.035E+00	3.251E+00	1.790E+01	1.620E+02	3.554E+01	1.820E+02	
17	2.663E+01	2.979E+01	4.892E+01	6.671E+01	5.098E+01	7.512E+01	
18	2.147E+01	3.435E+01	7.805E+01	1.236E+02	8.631E+01	1.185E+02	
19	2.297E+01	1.500E+01	5.746E+01	6.220E+01	6.167E+01	6.233E+01	
20	2.309E+01	8.217E+00	3.812E+01	5.783E+01	3.881E+01	5.780E+01	

Aydın and Yavuz (Dumlupınar University)

July 19, 2017

<ロト </2> </2> </2> </2>

13 / 16

Results over All Functions in BBOB testbed

Aydın and Yavuz (Dumlupınar University)

GECCO 2017 BBOB Workshop

July 19, 2017 14 / 16

Discussion

- SSEABC outperforms PSO, ABC and GA for almost all functions.
- SSEABC solved 11 functions in dimension 5 and 5 functions in dimension 20 with 100 % success rate
- For 2, 5 and 20 dimensional functions, SSEABC solved 9 functions optimally
- SSEABC is not good in separable functions.

Thank you! Questions?

Aydın and Yavuz (Dumlupınar University)

GECCO 2017 BBOB Workshop

∃ ⊳ July 19, 2017

(日)、(同)、(三)、

16 / 16

3