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Introduction: CMA-ES

» The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a
stochastic search algorithm using the multivariate normal distribution.

1. Generate candidate solutions (xgt))izl,g 2 from N (m®, C®).

.....

2. Evaluate f(xgt)) and sort them, f(x1.1) < -+ < f(x1:2).
3. Update the distribution parameters ) = (m"), C")) using the
ranking of candidate solutions.

» The CMA-ES has the default value for all strategy parameters (such as the
population size A, the learning rate 7. ).

» A larger population size than the default value improves its performance
on following scenarios.
1. Well-structured multimodal function

2. Noisy function

» It can be easily very expensive to tune the population size in advance.
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Introduction: Population Size Adaptation

> As a measure for the adaptation, we consider the randomness of the
parameter update.

» To quantify the randomness of the parameter update, we introduce the
evolution path in the parameter space.

» To keep the randomness of the parameter update in a certain level, the
population size is adapted online.

Advantage of adapting the population size online:

» It doesn’t require tuning of the population size in advance.

» On rugged function, it may accelerate the search by reducing the
population size after converging in a basin of a local minimum.
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Rank-u update CMA-ES

» The rank-u update CMA-ES, which is a component of the CMA-ES,
repeats the following procedure.

1. Generate candidate solutions (xf.’))izl,z _____ 2 from N (m®, CD).

2. Evaluate f(xgt)) and sort them, f(x1.2) <--- < f(x:2)-

3. Update the distribution parameters ) = (m®), C)) using the
ranking of candidate solutions.
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Population Size Adaptation: Measurement

To quantify the randomness of the parameter update, we introduce the evolution
path in the space ® of the distribution parameter 6 = (m, C).

P == B + B2 - pae

The evolution path accumulates the successive steps in the parameter space @.

(a) less tendency (b) strong tendency

Figure: An image of the evolution path
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Population Size Adaptation: Measurement

» We measure the length of the evolution path based on the KL-divergence.
Ipllg = p"Z(8)p ~ KL(01|6 + p)
The KL-divergence measures the defference between two probability distributions.

» We measure the randomness of the parameter update by the ratio between
]2 and its expected value y*1 ~ E[|[p“*||2] under a random
function.

dd+1) ,
5 e

A
Y ==y + p2-p) Z wi(dng, + =

» Two important cases

. pli3
» arandom function: = ~ 1

g
> too large A: oo
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Population Size Adaptation: Adaptation

lp*D 2 ) . o
f Tlf“) < a, regarding the update as inaccurate, the population size

is increased with
||P(t+1)||2(,)
A0+D [/l(’) exp (ﬁ (a - —(z+1)9 ))J vy 4.
Y

lp+D )12 . .
Tfm > a, regarding the update as sufficiently accurate, the

population size is decreased with

@+ _ [0 Pl
A =|4 exp ﬂ CX—W V/lmin~
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Algorithm Variant

We use the default setting for most of parameters. The modified
parameters are the learning rate for the mean vector, c,,,, and the

threshold « to decide whether the parameter update is considered
accurate or not.

PSAaLmC a = V2, ¢, = 0.1
PSAaLmD @ = V2, ¢, = 1/D
PSAaSmC a =1.1,¢,, =0.1
PSAaSmD «a« =1.1,¢,, = 1/D

» The greater « is, the greater the population size tends to be kept
» From our preliminaly study, we set ¢, = V2/(D + D)c,.
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Restart Strategy

For each (re-)start of the algorithm, we initialize the mean vector
m ~ U[-4,4]P and the covariance matrix C = 22/. The maximum
#f-call is set to 10°D.

Termination conditions
tolf: median(figr_hist) < 10 - 12abs(median(fmin_hist))
> the objective function value differences are too small to
sort them without being affected by numerical errors.
tolx: median(xiqr_hist) < 10 - 12min(abs(xmed_hist))
» the coordinate value differences are too small to update
parameters without being affected by numerical errors.

maxcond: cond(C) > 10

» the matrix operations using C are not reliable due to
numerical errors.

maxeval: #f-call > 5 x 10*D (for noiseless) or 10°D (for noisy)
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BIPOP-CMA-ES

BIPOP restart strategy: A restart strategy with two budgets of function
evaluations.
» one is for incremental population size.
> to tackle well-structured multimodal functions or noisy functions

» the other is for relatively small population size and a relatively small

step-size.
> to tackle weakly-structured multimodal functions
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Noiseless: Unimodal Function
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The aRT is higher for most of the unimodal functions than the best 2009 portfolio due to
lack of the step-size adaptation.
On Step-ellipsoid function, where the step-size adaptaiton is less important, our

algorithm performs well.
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Noiseless: Well-structured Multimodal Function
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The performance of the tested algorithms is similar to the performance of the
BIPOP-CMA-ES without the step-size adaptation.

Especially on Griewank-Rosenbrock, the tested algorithm is partly better than the best
2009 portfolio.



Noiseless: Weakly-structured Multimodal Function
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The BIPOP-CMA-ES performs better than the tested algorithm because the
tested algorithms doesn’t have the mechanism to tackle weakly-structure.
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Noiseless: Comparing the variants
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Variants with @ = 1.1 are better than ones with @ = V2.
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Noiseless Summary

» On Well-structured multimodal function, the tested algorithm performs
well without the step-size adaptaiton.

» For lack of the step-size adaptation, the aRT is higher for most of the
unimodal functions and the than the best 2009 portfolio.

» When the step-size is less important, the tested algorithm performs well.

» Variants with @ = 1.1 tends to be better than ones with @ = V2
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Noisy: Unimodal Function
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On sphere function, the algorithm is slower than the BIPOP-CMA-ES for lack
of the step-size adaptation.

The failure on the Rosenbrock functions is mainly due to the same reason.
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Noisy: Unimodal Function
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On step-ellipsoid function, where the step-size adaptation is less important, the
algorithm performs well.

17/23



Noisy Testbed
00e000

Noisy: Well-structured Multimodal Function
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On schaffer function, the performance of the tested algorithm is similarly to the
best 2009 portfolio, and partly better than it.
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Noisy: Compairing the variants
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The algorithms using ¢, = 1/D sometimes get worse in low dimension because
the learning rate is too large.
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Noisy: Compairing the variants
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Variants with @ = 1.1 are better than ones with @ = V2.
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Noisy Summary

» On Well-structured multimodal function, the tested algorithm
performance is similarly to the best 2009.

» For lack of the step-size adaptation, the convargence speed scales worse
on Sphere function and the aRT is higher for most of the unimodal
functions than the best 2009 portfolio.

» variants with @ = 1.1 tends to be better than ones with @ = V2

> ¢, = 1/D is too large at low dimension.
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Conclusion

Summary
> On well-structured multimodal function, the tested algorithm performance
is similarly to the best 2009.

» For lack of the step-size adaptation, the aRT is higher for most of the
unimodal function and the weakly-structured function than the best 2009
portfolio.

» On noisy function, ¢,, = 1/D is too large at low dimension.

Future Work

» We incorporate the rank-one adaptation and the step-size adaptation.



Using the small learning rate works as averaging the mean vector in
successive iteration.

(b) with a smaller learning rate
(a) with a larger learning rate
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