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Introduction: CMA-ES
I The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a

stochastic search algorithm using the multivariate normal distribution.
1. Generate candidate solutions (x (t )

i )i=1,2, ...,λ from N (m(t ),C (t )).

2. Evaluate f (x (t )
i ) and sort them, f (x1:λ ) < · · · < f (xλ:λ ).

3. Update the distribution parameters θ (t ) = (m(t ),C (t )) using the
ranking of candidate solutions.

I The CMA-ES has the default value for all strategy parameters (such as the
population size λ, the learning rate ηc ).

I A larger population size than the default value improves its performance
on following scenarios.
1. Well-structured multimodal function
2. Noisy function

I It can be easily very expensive to tune the population size in advance.
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Introduction: Population Size Adaptation
I As a measure for the adaptation, we consider the randomness of the

parameter update.

I To quantify the randomness of the parameter update, we introduce the
evolution path in the parameter space.

I To keep the randomness of the parameter update in a certain level, the
population size is adapted online.

Advantage of adapting the population size online:
I It doesn’t require tuning of the population size in advance.

I On rugged function, it may accelerate the search by reducing the
population size after converging in a basin of a local minimum.
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Rank-µ update CMA-ES
I The rank-µ update CMA-ES, which is a component of the CMA-ES,

repeats the following procedure.
1. Generate candidate solutions (x (t )

i )i=1,2, ...,λ from N (m(t ),C (t )).

2. Evaluate f (x (t )
i ) and sort them, f (x1:λ ) < · · · < f (xλ:λ ).

3. Update the distribution parameters θ (t ) = (m(t ),C (t )) using the
ranking of candidate solutions.

θ (t+1) = θ (t ) + ∆θ (t )

∆m(t ) = ηm

λ∑
i

wi (x (t )
i:λ − m(t )),

∆C (t ) = ηc

λ∑
i

wi ((x (t )
i:λ − m(t ))(x (t )

i:λ − m(t ))T − C (t ))
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Population Size Adaptation: Measurement
To quantify the randomness of the parameter update, we introduce the evolution
path in the space Θ of the distribution parameter θ = (m,C).

p(t+1) = (1 − β)p(t ) +
√
β(2 − β)∆θ (t )

The evolution path accumulates the successive steps in the parameter space Θ.

(a) less tendency (b) strong tendency

Figure: An image of the evolution path
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Population Size Adaptation: Measurement
I We measure the length of the evolution path based on the KL-divergence.

‖p‖2θ = pTI(θ)p ≈ K L(θ‖θ + p)

The KL-divergence measures the defference between two probability distributions.

I We measure the randomness of the parameter update by the ratio between
‖p(t+1) ‖2θ and its expected value γ

(t+1) ≈ E[‖p(t+1) ‖2θ ] under a random
function.

γ (t+1) = (1 − β)2γ (t ) + β(2 − β)
λ∑
i

w2
i (dη2m +

d(d + 1)
2

η2c )

I Two important cases

I a random function: ‖p ‖
2
θ

γ ≈ 1

I too large λ: ‖p ‖
2
θ

γ → ∞
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Population Size Adaptation: Adaptation

I If
‖p (t+1) ‖2

θ (t )

γ (t+1) < α, regarding the update as inaccurate, the population size
is increased with

λ (t+1) =

⌊
λ (t ) exp *

,
β *
,
α −
‖p(t+1) ‖2

θ (t )

γ (t+1)
+
-
+
-

⌋
∨ λ (t ) + 1.

I If
‖p (t+1) ‖2

θ (t )

γ (t+1) > α, regarding the update as sufficiently accurate, the
population size is decreased with

λ (t+1) =

⌊
λ (t ) exp *

,
β *
,
α −
‖p(t+1) ‖2

θ (t )

γ (t+1)
+
-
+
-

⌋
∨ λmin.
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Algorithm Variant
We use the default setting for most of parameters. The modified
parameters are the learning rate for the mean vector, cm , and the
threshold α to decide whether the parameter update is considered
accurate or not.
PSAaLmC α =

√
2, cm = 0.1

PSAaLmD α =
√
2, cm = 1/D

PSAaSmC α = 1.1, cm = 0.1
PSAaSmD α = 1.1, cm = 1/D

I The greater α is, the greater the population size tends to be kept
I From our preliminaly study, we set cc =

√
2/(D + 1)cm .
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Restart Strategy
For each (re-)start of the algorithm, we initialize the mean vector
m ∼ U[−4, 4]D and the covariance matrix C = 22I. The maximum
#f-call is set to 105D.

Termination conditions
tolf: median(fiqr_hist) < 10 - 12abs(median(fmin_hist))

I the objective function value differences are too small to
sort them without being affected by numerical errors.

tolx: median(xiqr_hist) < 10 - 12min(abs(xmed_hist))
I the coordinate value differences are too small to update

parameters without being affected by numerical errors.

maxcond: cond(C) > 1014
I the matrix operations using C are not reliable due to

numerical errors.

maxeval: #f-call ≥ 5 × 104D (for noiseless) or 105D (for noisy)
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BIPOP-CMA-ES
BIPOP restart strategy: A restart strategy with two budgets of function
evaluations.
I one is for incremental population size.

I to tackle well-structured multimodal functions or noisy functions

I the other is for relatively small population size and a relatively small
step-size.
I to tackle weakly-structured multimodal functions
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Noiseless: Unimodal Function
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The aRT is higher for most of the unimodal functions than the best 2009 portfolio due to
lack of the step-size adaptation.
On Step-ellipsoid function, where the step-size adaptaiton is less important, our
algorithm performs well.
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Noiseless: Well-structured Multimodal Function
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The performance of the tested algorithms is similar to the performance of the
BIPOP-CMA-ES without the step-size adaptation.
Especially on Griewank-Rosenbrock, the tested algorithm is partly better than the best
2009 portfolio.
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Noiseless: Weakly-structured Multimodal Function
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The BIPOP-CMA-ES performs better than the tested algorithm because the
tested algorithms doesn’t have the mechanism to tackle weakly-structure.
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Noiseless: Comparing the variants
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Variants with α = 1.1 are better than ones with α =
√
2.
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Noiseless Summary

I On Well-structured multimodal function, the tested algorithm performs
well without the step-size adaptaiton.

I For lack of the step-size adaptation, the aRT is higher for most of the
unimodal functions and the than the best 2009 portfolio.

I When the step-size is less important, the tested algorithm performs well.

I Variants with α = 1.1 tends to be better than ones with α =
√
2
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Noisy: Unimodal Function
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On sphere function, the algorithm is slower than the BIPOP-CMA-ES for lack
of the step-size adaptation.
The failure on the Rosenbrock functions is mainly due to the same reason.
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Noisy: Unimodal Function
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On step-ellipsoid function, where the step-size adaptation is less important, the
algorithm performs well.
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Noisy: Well-structured Multimodal Function
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On schaffer function, the performance of the tested algorithm is similarly to the
best 2009 portfolio, and partly better than it.

18 / 23



Introduction Algorithm Discription Noiseless Testbed Noisy Testbed Conclusion

Noisy: Compairing the variants
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The algorithms using cm = 1/D sometimes get worse in low dimension because
the learning rate is too large.
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Noisy: Compairing the variants
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Variants with α = 1.1 are better than ones with α =
√
2.
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Noisy Summary

I On Well-structured multimodal function, the tested algorithm
performance is similarly to the best 2009.

I For lack of the step-size adaptation, the convargence speed scales worse
on Sphere function and the aRT is higher for most of the unimodal
functions than the best 2009 portfolio.

I variants with α = 1.1 tends to be better than ones with α =
√
2

I cm = 1/D is too large at low dimension.
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Conclusion
Summary
I On well-structured multimodal function, the tested algorithm performance

is similarly to the best 2009.

I For lack of the step-size adaptation, the aRT is higher for most of the
unimodal function and the weakly-structured function than the best 2009
portfolio.

I On noisy function, cm = 1/D is too large at low dimension.

Future Work
I We incorporate the rank-one adaptation and the step-size adaptation.
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Using the small learning rate works as averaging the mean vector in
successive iteration.

(a) with a larger learning rate
(b) with a smaller learning rate
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