
6th GECCO Workshop on
Blackbox Optimization Benchmarking (BBOB):

Turbo Intro to COCO/BBOB

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

GECCO '14, Jul 12-16 2014, Vancouver, BC, Canada

ACM 978-1-4503-2881-4/14/07.

http://dx.doi.org/10.1145/2598394.2605339

The BBOBies
https://github.com/numbbo/coco

slides based on previous ones by A. Auger, N. Hansen, and D. Brockhoff

Optimize 𝑓: Ω ⊂ ℝ𝑛 ↦ ℝ𝑘

derivatives not available or not useful

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Numerical Blackbox Optimization

Given:

Not clear:

which of the many algorithms should I use on my problem?

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Practical Blackbox Optimization

• understanding of algorithms

• algorithm selection

• putting algorithms to a standardized test
• simplify judgement

• simplify comparison

• regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

• choosing (and implementing) problems, performance
measures, visualization, stat. tests, ...

• running a set of algorithms

Need: Benchmarking

that's where COCO and BBOB come into play

Comparing Continuous Optimizers Platform

https://github.com/numbbo/coco

automatized benchmarking

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

example_experiment.c

/* Iterate over all problems in the suite */

while ((PROBLEM = coco_suite_get_next_problem(suite, observer)) != NULL)

{

size_t dimension = coco_problem_get_dimension(PROBLEM);

/* Run the algorithm at least once */

for (run = 1; run <= 1 + INDEPENDENT_RESTARTS; run++) {

size_t evaluations_done = coco_problem_get_evaluations(PROBLEM);

long evaluations_remaining =

(long)(dimension * BUDGET_MULTIPLIER) – (long)evaluations_done;

if (... || (evaluations_remaining <= 0))

break;

my_random_search(evaluate_function, dimension,

coco_problem_get_number_of_objectives(PROBLEM),

coco_problem_get_smallest_values_of_interest(PROBLEM),

coco_problem_get_largest_values_of_interest(PROBLEM),

(size_t) evaluations_remaining,

random_generator);

}

https://github.com/numbbo/coco

result folder

automatically generated results

automatically generated results

On

• real world problems
• expensive

• comparison typically limited to certain domains

• experts have limited interest to publish

• "artificial" benchmark functions
• cheap

• controlled

• data acquisition is comparatively easy

• problem of representativeness

Measuring Performance

COCO/BBOB

• define the "scientific question"

the relevance can hardly be overestimated

• should represent "reality"

• are often too simple?

remind separability

• account for invariance properties

prediction of performance is based on “similarity”,
ideally equivalence classes of functions

Test Functions

Available Test Suites in COCO

• bbob 24 noiseless fcts 140+ algo data sets

• bbob-noisy 30 noisy fcts 40+ algo data sets

• bbob-biobj 55 bi-objective fcts in 2016

15 algo data sets

Under development:

• large-scale versions

• constrained test suite

Long-term goals:

• combining difficulties

• almost real-world problems

• real-world problems

new

Meaningful quantitative measure
• quantitative on the ratio scale (highest possible)

"algo A is two times better than algo B" is a meaningful statement

• assume a wide range of values

• meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

runtime or first hitting time is the prime candidate
(we don't have many choices anyway)

How Do We Measure Performance?

Two objectives:

• Find solution with small(est possible) function/indicator
value

• With the least possible search costs (number of function
evaluations)

For measuring performance: fix one and measure the other

How Do We Measure Performance?

Measuring Performance Empirically

ECDF:

Empirical Cumulative Distribution Function of the Runtime

[aka data profile]

15 Runs

target

15 Runs ≤ 15 Runtime Data Points

Empirical CDF
1

0.8

0.6

0.4

0.2

0

the ECDF of run
lengths to reach
the target

● has for each
data point a
vertical step of
constant size

● displays for each
x-value (budget)
the count of
observations to
the left (first
hitting times)

Empirical Cumulative Distribution

e.g. 60% of the runs need between 2000 and 4000 evaluations
e.g. 80% of the runs reached the target

15 runs

Aggregation

15 runs

50 targets

Aggregation

15 runs

50 targets

Aggregation

15 runs

50 targets

ECDF with 750
steps

Aggregation

50 targets from
15 runs

...integrated in a
single graph

Aggregation

Fixed-target: Measuring Runtime

Fixed-target: Measuring Runtime

• Algo Restart A:

• Algo Restart B:

𝑹𝑻𝑨
𝒓

ps(Algo Restart A) = 1

𝑹𝑻𝑩
𝒓

ps(Algo Restart A) = 1

Fixed-target: Measuring Runtime

• Expected running time of the restarted algorithm:

𝐸 𝑅𝑇𝑟 =
1 − 𝑝𝑠
𝑝𝑠
𝐸 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 + 𝐸[𝑅𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙]

• Estimator average running time (aRT):

 𝑝𝑠 =
#successes

#runs

 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐 = Average evals of unsuccessful runs

 𝑅𝑇𝑠𝑢𝑐𝑐 = Average evals of successful runs

𝑎𝑅𝑇 =
total #evals

#successes

ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated restarted
algorithms:

Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

• never aggregate over dimension

• but often over targets and functions

• can show data of more than 1 algorithm at a time

The single-objective BBOB functions

• 24 functions in 5 groups:

• 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

bbob Testbed

• All COCO problems come in form of instances

• e.g. as translated/rotated versions of the same
function

• Prescribed instances typically change from year to year

• avoid overfitting

• 5 instances are always kept the same

Plus:

• the bbob functions are locally perturbed by non-linear
transformations

Notion of Instances

• All COCO problems come in form of instances

• e.g. as translated/rotated versions of the same
function

• Prescribed instances typically change from year to year

• avoid overfitting

• 5 instances are always kept the same

Plus:

• the bbob functions are locally perturbed by non-linear
transformations

Notion of Instances

f10 (Ellipsoid) f15 (Rastrigin)

• 30 functions with various kinds of noise types and
strengths
• 3 noise types: Gaussian, uniform, and seldom Cauchy

• Functions with moderate noise

• Functions with severe noise

• Highly multi-modal functions with severe noise

• bbob functions included: Sphere, Rosenbrock, Step ellipsoid,
Ellipsoid, Different Powers, Schaffers' F7, Composite Griewank-
Rosenbrock

• 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

bbob-noisy Testbed

BBOB-2016 Session III

14:00 - 14:15 The BBOBies: Session Introduction

14:15 - 14:40
Kouhei Nishida* and Youhei Akimoto: Evaluating the

Population Size Adaptation Mechanism for CMA-ES

14:40 - 15:05 The BBOBies: Wrap-up of all BBOB-2016 Results

15:05 - 15:30
Thomas Weise*: optimizationBenchmarking.org: An

Introduction

15:30 - 15:50 Open Discussion

