6t GECCO Workshop on
Blackbox Optimization Benchmarking (BBOB):
Turbo Intro to COCO/BBOB

The BBOBies
https://github.com/numbbo/coco

y 4

(rezia—

INVENTORS FOR THE DIGITAL WORLD

slides based on previous ones by A. Auger, N. Hansen, and D. Brockhoff

Numerical Blackbox Optimization

Optimize f: Q c R" » R

x € R" f(x)eIR"‘>

Practical Blackbox Optimization

Given:

x € R" f(x)eIR"‘>

Not clear:
which of the many algorithms should | use on my problem?

Need: Benchmarking

* understanding of algorithms
* algorithm selection

 putting algorithms to a standardized test
* simplify judgement
* simplify comparison
* regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

* choosing (and implementing) problems, performance
measures, visualization, stat. tests, ...

* running a set of algorithms

that's where COCO and BBOB come into play

\,

Comparing Continuous Optimizers Platform
https://github.com/numbbo/coco

automatized benchmarking

https://github.com/numbbo/coco

."f-_-l\.
| (' | @ GitHub, Inc. (US] | https://github.com/numbbo/coco

[#) Most Visited (' Getting Started |2 algorithms [COmparin... €) numbbo/numbbo - Gi...

O This repository Pull requests Issues Gist Y+

L numbbo / coco ® Unwatch~ 10 d Unstar 9 ¥ Fork 12

<> Code (1) Issues 1M Il Pull requests 1 4~ Pulse i1 Graphs i} Settings
MNumerical Black-Box Optimization Benchmarking Framework http://coco gforge.innia. fr/f — Edit

D 6,931 commits ¥ 11 branches 5 15 releases 13 contributors

Branch: master = New pull request New file Upload files Find file HTTPS ~ https://github.com/numbt [3 3] Download ZIP

5 nikohansen Merge pull request #720 from numbbo/development == Latest commit bcea®b2 5 days ago

B code-experiments modified: code-experiments/build/python/cython/interface.c 5 days ago
8 code-postprocessing Stop condition fixed. 6 days ago
i docs docs/coco-doc edit 7 days ago
i howtos Update release-howto.md 20 days ago
E) clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
E) .hgignore raising an error in bbob2009 logger.c when best value is NULL. Plus s... a year ago
E) AUTHORS minor a month ago
E) LICENSE Create LICENSE 2 months ago
E) README . md Update README .md 10 days ago

E) do.py Added other paths to jdk on mac. 6 days ago

https://github.com/numbbo/coco

' (‘ ' @ GitHub, Inc. (US) | https://github.com/numbbeo/coco c C®5earch
S

Most Visited (' Getting Started (& algorithms [COmparin... £ numbba/numbba - Gi...

E) doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 4 months ago

EE README.md

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in ans1 ¢ with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous
— i mey. solvers for numerical optimization. Languages currently available are

C/C++

Java
MATLAB/Octave
Python

or languages (including a better example in c++) are more than welcome.
For more information,

= consult the BBOB waorkshops series,

« consider to register here for news,

» see the previous COCO home page here and

+ see the links below to learn more about the ideas behind CoCO.

Requirements

https://github.com/numbbo/coco

' (‘ ' @ GitHub, Inc. (US) | https://github.com/numbbeo/coco c C®5earch
S 1

Most Visited (' Getting Started (& algorithms [COmparin... £ numbba/numbba - Gi...

4_0n the computer where experiment data shall be post-processed, run

python do.py install-postprocessing

to (user-locally) install the post-processing. From here on, do.py has done its job and is only needed again for updating
the builds to a new release.

. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example experiment.py . Run the example experiment (it already is compiled, in case). As the
details vary, see the respective read-me's and/or example experiment files:

o c read me afjd example experiment

o Java read moroame

o Matlab/Octave read me and example experiment
o python read me and example experiment’

If the example experiment runs, connect your favorite algorithm to Coco: replace the call to the random search optimizer
in the example experiment file by a call to your algorithm (see above). Update the output result_folder | the
algorithm_name and algorithm_info of the observer options in the example experiment file.

Another entry point for your own experiments can be the code-experiments/examples folder.

- Now you can run your favorite algorithm on the bbob-biobj (for multi-objective algorithms) or an the bbeb suite (for
single-objective algorithms). Output is automatically generated in the specified data result_folder .

7. Postprocess the data from the results folder by typing

python -m bbob_pproc [-o OUTPUT_FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]

example_experiment.c

/* Iterate over all problems in the suite */
while ((PROBLEM = coco_suite get next problem(suite, observer)) != NULL)

{

size t dimension = coco_problem get dimension (PROBLEM) ;

/* Run the algorithm at least once */
for (run = 1; run <= 1 + INDEPENDENT RESTARTS; run++) {

size t evaluations_done = coco_problem get evaluations (PROBLEM) ;

long evaluations_ remaining =
(long) (dimension * BUDGET MULTIPLIER) - (long)evaluations_done;

if (... || (evaluations remaining <= 0))
break;

[my random search (ialuate_function , dimension,

oblem get number of objectives (PROBLEM) ,
coco_problem get smallest values of interest (PROBLEM),
coco_problem get largest values of interest (PROBLEM),
(size_t) evaluations_remaining,
random generator) ;

. _____________d

uuuu_ru.

https://github.com/numbbo/coco

' (‘ ' @ GitHub, Inc. (US) | https://github.com/numbbeo/coco c C®5earch
S

Most Visited Getting Started 'iz algorithms [COmparin... O numbbo/numbbo - Gi..

SLEUT DL ITEnis Wi SLgul DO LT o W e sl vl DI RS 1T U A TR TS A e i e

Another entry point for your own experiments can be the code-experiments/examples folder.

- Now you can run your favorite algorithm on the bbob-biobj (for multi-objective algorithms) or on the bbob suite (for
single-objective algorithms). Output is automatically generated in the specified data result_folder .

. Postprocess the data from the results folder by typing

python -m bbob_pproc [-o OUTPUT_FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]

The name bbob_pproc will become cocopp in future. Any subfolder in the folder arguments will be searched for logged
data. That is, experiments from different batches can be in different folders collected under a single "root"
YOURDATAFOLDER folder. We can also compare more than one algorithm by specifying several data result folders
generated by different algorithms.

A folder, ppdata by default, will be generated, which contains all output from the post-processing, including a
ppdata.html file, useful as main entry point to explore the result with a browser. Data might be overwritten, it is
therefore useful to change the output folder name with the -o ouTPUT_FoLDERNAME option.

For the single-objective bbob suite, a summary pdf can be produced via LaTeX. The corresponding templates in ACM
format can be found in the code-postprocessing/latex-templates folder. LaTeX templates for the multi-objective
bbob-biobj suite will follow in a later release. A basic html output is also available in the result folder of the
postprocessing (file templateBBOBarticle.html).

- Once your algorithm runs well, increase the budget in your experiment script, if necessary implement randomized
independent restarts, and follow the above steps successively until you are happy.

If you detect bugs or other issues, please let us know by opening an issue in our issue tracker at hitps://github.com/numbbo
/cocofissues.

result folder

al _ud ad

Organize = Include in library = Share with = Mew folder

i Favorites
Bl Desktop
J. Downloads

%# Dropbox
£l Recent Places

- Libraries
@ Documents
i Git
J’i Music
[& Pictures
=1 Subversion

H videos

#d Homegroup

' 3 iterns

Mame

. R5_on_bbob-bichj-3edfunevals

o bbob_pproc_commands.tex

Date modified

25/02/2016 21:33
25/02/2016 21:37

Type

File folder

LaTeX Document

|| ppdata.html

25/02,/2016 21:32

Firefox HTML Doc...

automatically generated results

ﬁ n RS, templateBEOBarticle

' (' ' 2 | @ filey/fC:/Users/dimo/Desktop/numbbo-github/bbob-biokj-data/data/ppdata/R5_on_bbob-biok c Q Search

Most Visited Getting Started rll.:.'a:! algorithms [COmparin... O numbbo/numbbo - Gi..
RS

[Home]
[Runleneth distribution plois]

Expected number of f~evaluations to reach target

4 Sphere/Rosenbrock

1 SpherelSphere
: Pt

=3
pad
ke

bsolute targets

bsolute targets

10 20 2 3 5 10 20 40
5 Sphere/Sharp ridge 6 Sphere/Different Powers

10 20
7 Sphere/Rastrigin

absolute targets
2 3 5 10 20 40

8 Sphere/Schaffer F7

ey

w

bsolute targets bsolute targets

bsolute targets

5
4
3
2
1
0

bsolute targets

2 3 5 10 20 40 2 3 5 10 20 40
9 Sphere/S5chwefel -~ 10 Sphere/Gallagher 101

2 3 5 10 20 40
11 sep. Ellipsoid/sep. Ellipsoid

2 3 5 10 20 40
182 sep. Ellipsoid/Attractive sector

1

automatically generated results

pprldmany

e -
l:_\(' I | @ filey/Ci/Users/dimo/Desktop/numbbo-github/bbob-biokj-data/data/ppdata/R5_on_bbob-biok c [Q Search

Most Visited ' Getting Started |2 algorithms [COmparin... €) numbbo/numbbo - Gi...

[Other plots]
Scaling of ERT with dimension

3 Sphere/Attractive sector
s -

=
[=]

=
=]

1 Sphere/Sphere 2 Sphere/sep. Ellipsoid
A R i

=
=)
=
=)

o
<
s

portion of function+target pairs
=
e}

portion of function+target pairs
o
o

RN .:-r'-".f;' A
2 3 4 5
logl0 of (# fevals / dimension) logl0 of (# f-evals / dimension)
4 Sphere/Rosenbrock _5 Sphere/Sharp ridge

Prgportion of function+target pairs

Prp

VED T

o
@

=
.

o
ta
o
mJ

E
m
=9
o
w
=y
b
+
c
k=]
et
o
c
2
s
c
k=]
=
=

ortion of function+target pairs
ortion of function+target pairs
=}
o

i

Qﬁe—‘ & - P—e110-
2 3 4 5 1 2 3 4 5 6 7 8
logl0 of (# f-evals / dimension) logl0 of (# f-evals [dimension) logl0 of {# f-evals / dimension)
7 Sphere/Rastrigin 8 Sphere/S5chaffer F7 9 Sphere/Schwefel
SPETEIEIREaE SRR VI R

3

P
=
=)

P
P

=
=
=]
=
=]

7 f8 fo

o
ta
e
oo

=
o)
=
o

S
'S
<
=~

n of function+target pairs
n of function+target pairs
n of function+target pairs

Measuring Performance

On

* real world problems
* expensive
* comparison typically limited to certain domains
e experts have limited interest to publish

* "artificial" benchmark functions
* cheap
e controlled - COCO/BBOB
* data acquisition is comparatively easy
* problem of representativeness

Test Functions

define the "scientific question”
the relevance can hardly be overestimated
should represent "reality"
are often too simple?
remind separability
account for invariance properties

prediction of performance is based on “similarity”,
ideally equivalence classes of functions

Available Test Suites in COCO

* bbob 24 noiseless fcts 140+ algo data sets
* bbob-noisy 30 noisy fcts 40+ algo data sets
* bbob-biobj 55 bi-objective fcts in 2016

15 algo data sets

How Do We Measure Performance?

Meaningful quantitative measure
e guantitative on the ratio scale (highest possible)

"algo A is two times better than algo B" is a meaningful statement
e assume a wide range of values

* meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

runtime or first hitting time is the prime candidate
(we don't have many choices anyway)

How Do We Measure Performance?

Two objectives:

* Find solution with small(est possible) function/indicator
value

* With the least possible search costs (humber of function
evaluations)

For measuring performance: fix one and measure the other

Measuring Performance Empirically

quality indicator (to be minimized)

[o e o o e o

number of function evaluations

ECDF:
Empirical Cumulative Distribution Function of the Runtime
[aka data profile]

15 Runs

3
log,,(function evaluations)

2

anjeA uollduny

15 Runs £ 15 Runtime Data Points

100

90

80

function value

70

60

1 2 5 4
log,,(function evaluations)

Empirical Cumulative Distribution

110 pymry the of run
lengths to reach
100 the target
@ . has for each
= 90 data. point a
z vertical step of
= constant size
c 80 .
2 . displays for each
x-value (budget)

70 the count of

observations to
the left (first
hitting times)

60

log,o(function evaluations)

e.g. 60% of the runs need between 2000 and 4000 evaluations
80% of the runs reached the target

Aggregation

15 runs

3

2
log,,(function evaluations)

anjeA uollduny

Aggregation

110
15 runs
100 50 targets
v i :l..-".;'_::i:!f:: e
=3 AN — -~
© 90 = ATESTER
-
c
S
E 80
=
70
007 > 3 g

log,,(function evaluations)

Aggregation

110 g

100+

function value

70¢F

60

90+

80+

log,o(function evaluations)

15 runs

50 targets

Aggregation

110 g

100+

function value

70¢F

60

90+

80+

log,o(function evaluations)

15 runs

50 targets

Aggregation

110

100

90

80

function value

70

..

60—

o

» 1
v
AN A

2 3 4
log,,(function evaluations)

50 targets from
15 runs

...integrated in a
single graph

Fixed-target: Measuring Runtime

ps(Algo A) << 1, fast convergence

ps(Algo B) ~ 1__, slow convergence

Fixed-target: Measuring Runtime

e Algo Restart A:

p,(Algo Restart A) = 1

 Algo Restart B:

p,(Algo Restart A) = 1

Fixed-target: Measuring Runtime

* Expected running time of the restarted algorithm:

1-p
E[RTT] = D - E[RTunsuccessful] + E[RTsuccessful]
S

e Estimator average running time (aRT):

__ #successes
Ps =

#runs

RT,,,succ = Average evals of unsuccessful runs

RT, .. = Average evals of successful runs

total #evals

aRT =
#successes

ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated restarted
algorithms:

.. 15phere/Sphere
bbob:biobj + f1 | | | 375
10 instances | | | |

=
o

O
0o

O
)

o
N

Proportion of function+target pairs

4 5 6 71 8
loal0 of (# f-evals / dimension)

0 1 2

Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

* never aggregate over dimension
* but often over targets and functions

* can show data of more than 1 algorithm at a time

The single-objective BBOB functions

bbob Testbed

e 24 functions in 5 groups:

1 Separable Functions 4 Multi-modal functions with adequate global structure
f1 |@ 5Sphere Function f15 @ Rastrigin Function

f2 |@Ellipsoidal Function f1s |@ Weierstrass Function

f3 | @Rastrigin Function f17 @ Schaffers F7 Function

f4 @ Biiche-Rastrigin Function fig @ sSchaffers F7 Functions, moderately ill-conditioned
fz |@Linear Slope f19 @@ Composite Griewank-Rosenbrock Function FEBF2
2 Functions with low or moderate conditioning 5 Multi-modal functions with weak global structure

fo |@Attractive Sector Function f20 @ Schwefel Function

f7 |@ 5tep Ellipsoidal Function f21 @ Gallagher's Gaussian 101-me Peaks Function

fa |@PRosenbrock Function, original f22 @ Gallagher's Gaussian 21-hi Peaks Function

fo |@Rosenbrock Function, rotated f23 @Katsuura Function

3 Functions with high conditioning and unimodal f24 @ Lunacek bi-Rastrigin Function

f10 |@Ellipsoidal Function

f11 | @Discus Function

f12 @ EBent Cigar Function

f13 |@ 5Sharp Ridge Function

f14 @ Different Powers Function

* 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

Notion of Instances

* All COCO problems come in form of instances
* e.g. as translated/rotated versions of the same
function
* Prescribed instances typically change from year to year
* avoid overfitting
* 5 instances are always kept the same

Plus:

* the bbob functions are locally perturbed by non-linear
transformations

Notion of Instances

i TRAR E R N = I

+ f,, (Ellipsoid) /— 4 fic (Rastrigin) ¢ \\‘ﬁ\
N .\\p'
AN

bbob-noisy Testbed

* 30 functions with various kinds of noise types and
strengths
* 3 noise types: Gaussian, uniform, and seldom Cauchy
Functions with moderate noise
Functions with severe noise
Highly multi-modal functions with severe noise

bbob functions included: Sphere, Rosenbrock, Step ellipsoid,
Ellipsoid, Different Powers, Schaffers' F7, Composite Griewank-
Rosenbrock

* 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

BBOB-2016 Session lli

T The BBOBies: Session Introduction
i Nishida* i Aki : Evaluating th
14-15 - 14:40 Kouhei lehlfja and YOl:IheI |mot9 valuating the
Population Size Adaptation Mechanism for CMA-ES

e B The BBOBies: Wrap-up of all BBOB-2016 Results

15:05 - 15:30 Thomas Weise*: optimizationBenchmarking.org: An
Introduction

e 1 1 Open Discussion

