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Optimize 𝑓: Ω ⊂ ℝ𝑛 ↦ ℝ𝑘

derivatives not available or not useful

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Numerical Blackbox Optimization



Given:

Not clear:

which of the many algorithms should I use on my problem?

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Practical Blackbox Optimization



• understanding of algorithms

• algorithm selection

• putting algorithms to a standardized test
• simplify judgement

• simplify comparison

• regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

• choosing (and implementing) problems, performance 
measures, visualization, stat. tests, ...

• running a set of algorithms

Need: Benchmarking



that's where COCO and BBOB come into play

Comparing Continuous Optimizers Platform

https://github.com/numbbo/coco



automatized benchmarking



https://github.com/numbbo/coco



https://github.com/numbbo/coco



https://github.com/numbbo/coco



example_experiment.c

/* Iterate over all problems in the suite */

while ((PROBLEM = coco_suite_get_next_problem(suite, observer)) != NULL) 

{

size_t dimension = coco_problem_get_dimension(PROBLEM);

/* Run the algorithm at least once */

for (run = 1; run <= 1 + INDEPENDENT_RESTARTS; run++) {

size_t evaluations_done = coco_problem_get_evaluations(PROBLEM);

long evaluations_remaining =

(long)(dimension * BUDGET_MULTIPLIER) – (long)evaluations_done;

if (... || (evaluations_remaining <= 0))

break;

my_random_search(evaluate_function, dimension,

coco_problem_get_number_of_objectives(PROBLEM),                     

coco_problem_get_smallest_values_of_interest(PROBLEM),                   

coco_problem_get_largest_values_of_interest(PROBLEM),

(size_t) evaluations_remaining,

random_generator);

}



https://github.com/numbbo/coco



result folder



automatically generated results



automatically generated results



On

• real world problems
• expensive

• comparison typically limited to certain domains

• experts have limited interest to publish

• "artificial" benchmark functions
• cheap

• controlled

• data acquisition is comparatively easy

• problem of representativeness

Measuring Performance

COCO/BBOB



• define the "scientific question"

the relevance can hardly be overestimated

• should represent "reality"

• are often too simple?

remind separability

• account for invariance properties

prediction of performance is based on “similarity”, 
ideally equivalence classes of functions

Test Functions



Available Test Suites in COCO

• bbob 24 noiseless fcts 140+ algo data sets

• bbob-noisy 30 noisy fcts 40+ algo data sets

• bbob-biobj 55 bi-objective fcts in 2016

15 algo data sets

Under development:

• large-scale versions

• constrained test suite

Long-term goals:

• combining difficulties

• almost real-world problems

• real-world problems

new



Meaningful quantitative measure
• quantitative on the ratio scale (highest possible)

"algo A is two times better than algo B" is a meaningful statement

• assume a wide range of values 

• meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

runtime or first hitting time is the prime candidate
(we don't have many choices anyway)

How Do We Measure Performance?



Two objectives:

• Find solution with small(est possible) function/indicator 
value

• With the least possible search costs (number of function 
evaluations)

For measuring performance: fix one and measure the other

How Do We Measure Performance?



Measuring Performance Empirically



ECDF:

Empirical Cumulative Distribution Function of the Runtime

[aka data profile]



15 Runs



target

15 Runs ≤ 15 Runtime Data Points



Empirical CDF
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the ECDF of run 
lengths to reach 
the target

● has for each 
data point a 
vertical step of 
constant size

● displays for each 
x-value (budget) 
the count of 
observations to 
the left (first 
hitting times)

Empirical Cumulative Distribution

e.g. 60% of the runs need between 2000 and 4000 evaluations
e.g. 80% of the runs reached the target



15 runs

Aggregation



15 runs

50 targets

Aggregation



15 runs

50 targets

Aggregation



15 runs

50 targets

ECDF with 750 
steps

Aggregation



50 targets from 
15 runs 

...integrated in a 
single graph

Aggregation



Fixed-target: Measuring Runtime



Fixed-target: Measuring Runtime

• Algo Restart A:

• Algo Restart B:

𝑹𝑻𝑨
𝒓

ps(Algo Restart A) = 1

𝑹𝑻𝑩
𝒓

ps(Algo Restart A) = 1



Fixed-target: Measuring Runtime

• Expected running time of the restarted algorithm:

𝐸 𝑅𝑇𝑟 =
1 − 𝑝𝑠
𝑝𝑠
𝐸 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 + 𝐸[𝑅𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙]

• Estimator average running time (aRT):

 𝑝𝑠 =
#successes

#runs

 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐 = Average evals of unsuccessful runs

 𝑅𝑇𝑠𝑢𝑐𝑐 = Average evals of successful runs

𝑎𝑅𝑇 =
total #evals

#successes



ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated restarted 
algorithms:



Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

• never aggregate over dimension

• but often over targets and functions

• can show data of more than 1 algorithm at a time



The single-objective BBOB functions



• 24 functions in 5 groups:

• 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

bbob Testbed



• All COCO problems come in form of instances

• e.g. as translated/rotated versions of the same 
function

• Prescribed instances typically change from year to year

• avoid overfitting

• 5 instances are always kept the same

Plus:

• the bbob functions are locally perturbed by non-linear 
transformations

Notion of Instances
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Notion of Instances

f10 (Ellipsoid) f15 (Rastrigin)



• 30 functions with various kinds of noise types and 
strengths
• 3 noise types: Gaussian, uniform, and seldom Cauchy

• Functions with moderate noise

• Functions with severe noise

• Highly multi-modal functions with severe noise

• bbob functions included: Sphere, Rosenbrock, Step ellipsoid, 
Ellipsoid, Different Powers, Schaffers' F7, Composite Griewank-
Rosenbrock

• 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

bbob-noisy Testbed



BBOB-2016 Session III

14:00 - 14:15 The BBOBies: Session Introduction

14:15 - 14:40
Kouhei Nishida* and Youhei Akimoto: Evaluating the 

Population Size Adaptation Mechanism for CMA-ES

14:40 - 15:05 The BBOBies: Wrap-up of all BBOB-2016 Results

15:05 - 15:30
Thomas Weise*: optimizationBenchmarking.org: An 

Introduction

15:30 - 15:50 Open Discussion


