Unbounded Population MO-CMA-ES for the Bi-Objective BBOB Test Suite

Oswin Krause, Tobias Glasmachers, Nikolaus Hansen, and Christian Igel
Department of Computer Science

UP-MO-CMA-ES in a nutshell

- Population S of Individuals: $\left(x_{i}, \sigma_{i}, C_{i}\right), i=1, \ldots$
while Stopping criterion is not met do
Select parent from S based on Hypervolume Contribution; Sample Offspring with Crossover; if Offspring is non-dominated in S then Adapt (σ, C) of parent and offspring; Add offspring to S; end else

Adapt σ of parent;
end
end

Parent Selection

- Select parent based on Hypervolume Contribution
- Select extremum points with probability $p_{\text {extreme }}$
- Otherwise select parent i with probability

$$
p_{i}=\frac{\delta \operatorname{Vol}_{S}\left(f\left(x_{i}\right)\right)^{\alpha}}{\sum_{j} \delta \operatorname{Vol}_{S}\left(f\left(x_{j}\right)\right)^{\alpha}}
$$

Crossover

- C_{i} Covariance matrix of parent
- $i-1, i+1$ neighbours of the parent on the front in f-value
- Covariance matrix of offspring

$$
\begin{aligned}
& C=\left(1-c_{r}\right) C_{i}+\frac{c_{r}}{2}\left(\frac{x_{i-1}-x_{i}}{\sigma_{i}}\right)\left(\frac{x_{i-1}-x_{i}}{\sigma_{i}}\right)^{\top} \\
&+\frac{c_{r}}{2}\left(\frac{x_{i+1}-x_{i}}{\sigma_{i}}\right)\left(\frac{x_{i+1}-x_{i}}{\sigma_{i}}\right)^{\top}
\end{aligned}
$$

Covariance-Matrix-Adaptation

- Parent $\left(C_{i}, \sigma_{i}, x_{i}\right)$, Offspring (C, σ, x)
- Adapt Covariance matrix of offspring by

$$
C \leftarrow\left(1-c_{\mathrm{cov}}\right) C+c_{\mathrm{cov}}\left(\frac{x-x_{i}}{\sigma_{i}}\right)\left(\frac{x-x_{i}}{\sigma_{i}}\right)^{\top} .
$$

- Same for parent

Step Size adaptation

- Success based as in MO-CMA-ES
- Running estimate of success rate
- Adjust σ until success rate $1 / 2$

Multi-Objective Exploration

- Dominance-based selection gets stuck in local optima
- Run $k=100$ instances in round robin fashion
- D initial points per instance
- Merge fronts after $10^{4} \mathrm{D}$ iterations
- Run single front until budget exhausted

Results on Sphere/Sphere

Results on Sphere/Rastrigin

Results on Sphere/Rastrigin

Overall Results

Thanks

See you at BBComp Session!

