## A MATLAB Toolbox for Surrogate-Assisted Multi-Objective Optimization: A Preliminary Study

Abdullah Al-Dujaili, S. Suresh

Nanyang Technological University

aldujail001@e.ntu.edu.sg

July 18, 2016

#### Motivation

Multi-objective Optimization Problems (MOPs) involve a set of **conflicting** objectives that are to be optimized **simultaneously**.

It is common that derivatives of the objectives f are neither symbolically nor numerically available.

Evaluating  $\mathbf{f}$  is typically **expensive** requiring some computational resources (e.g., a computer code or a laboratory experiment).

Solve using a finite budget of function evaluations.

A 3 3 4

### Motivation

**Surrogate modeling**: a powerful ingredient for **computationally-expensive** Single-objective Optimization Problems (SOPs) (Jones et al., JOPT, 1998).

Readily **available well-benchmarked** software libraries for surrogate-assisted SOPs (Mueller, arXiv, 2014).

MOPs: growing community efforts towards consolidating—e.g., the recent SAMCO workshop<sup>1</sup>. benchmarking surrogate-assisted algorithms (on different problems independently (Akhtar & Shoemaker, JOPT, 2015)).



#### Add a brick to the ongoing efforts **Multi-objectifying** MATSuMoTo: a surrogate-assisted library for SOPs (Mueller, arXiv, 2014).

**Validate** its performance on the Bi-objective Black Box Optimization Benchmarking (Tusar et al., arXiv, 2016).

★ Ξ →

### Surrogate-Assisted Optimization



Figure: Surrogate-assisted optimization framework.

For MOPs:

exploration-exploitation-diversification is sought.

Two approaches for Step 4:

- A1 Using the surrogate model indirectly to generate a set of candidate points: the selected points for evaluation are the optimizers of a measure derived from the surrogate model (e.g., Emmerich et al., IEEE CEC, 2011).
- A2 Using the surrogate model directly to generate a set of candidate points: a subset of these points are then selected for evaluation based on a set of rules (e.g., Akhtar & Shoemaker, JOPT, 2015).

(日) (同) (三) (三)

## Surrogate-Assisted Optimization

- The first approach has been the focus of several optimization software packages (e.g., Binois & Picheny, GPareto, 2016).
- The second approach lends itself naturally to the framework of the MATSuMoTo library for SOPs (Mueller, arXiv, 2014).
- In this paper:
  - \* incorporate a variant of Approach A2 (GOMORS by Akhtar & Shoemaker, JOPT, 2015) into the MATSuMoTo library.
  - \* assess its strength and weakness vs. a variant of Approach A1: GPareto package: SMS-EGO, EHI-EGO, EMI-EGO, SUR-EGO by Binois & Picheny, GPareto, 2016.

## Surrogate-Assisted Optimization

Table: Possible feature choices for the individual steps of MATSuMoTo. Highlighted choices: new features supporting multi-objective optimization problems.

| Algorithm Step        | Choice Name           | Description                                                                    |
|-----------------------|-----------------------|--------------------------------------------------------------------------------|
| (1) Initial design    | CORNER<br>SLHD<br>Ihd | Corner points of the hypercube<br>Symmetric Latin hypercube<br>Latin hypercube |
| (3) Surrogate model   | RBFcub                | Cubic RBF                                                                      |
|                       | RBFgauss              | Gaussian RBF                                                                   |
|                       | RBFtps                | Thin-plate spline RBF                                                          |
|                       | RBFlin                | Linear RBF                                                                     |
|                       | MARS                  | Multivariate adaptive regression spline                                        |
|                       | POLYlin               | Linear regression polynomial                                                   |
|                       | POLYquad              | Quadratic regression polynomial                                                |
|                       | POLYquadr             | Reduced quadratic regression polynomial                                        |
|                       | POLYcub               | Cubic regression polynomial                                                    |
|                       | POLYcubr              | Reduced cubic regression polynomial                                            |
|                       | MIX_RcM               | Mixture of RBFcub and MARS                                                     |
|                       | MIX_RcPc              | Mixture of RBFcub and POLYcub                                                  |
|                       | MIX_RePer             | Moxture of RBFcub and POLYcubr                                                 |
|                       | MIX_RcPq              | Moxture of KBFcub and POLYquad                                                 |
|                       | MIX_RcPqr             | Mixture of RBFcub and POLYquadr                                                |
| -                     | MIX_RcPcM             | Mixture of RBFcub, POLYcub, and MARS                                           |
| (4) Sampling strategy | CANDloc               | Local candidate point search                                                   |
|                       | CANDglob              | Global candidate point search                                                  |
|                       | SurfMin               | Minimum point of surrogate model                                               |
|                       | SurfPareto            | Pareto front of surrogate model (currently employs GOMORS)                     |

Abdullah Al-Dujaili, S. Suresh Multi-objectifying MATSuMoTo

#### Assessment

- Interfacing the Comparing Continuous Optimizer (COCO) platform with GPareto R package (too slow, weeks for n = 20!).
- Preliminary results qualified SMS-EGO
- Within MO-MATSuMoTo, SMS-EMOA (Beume et al., EJOR, 2007) and MO-DIRECT (AI-Dujaili & Suresh, CEC, 2016) used.<sup>2</sup>
- SMS-EGO vs. MAT-SMS vs. MAT-DIRECT.

<sup>2</sup>Available at http://ash-aldujaili.github.io/projects.html 🗈 🛌 🤊 🤉 🖉

#### Experimental Setup

COCO guidelines : data profiles and statistical test

 $55\ {\rm problems}$  based on bi-combinations of 24 noiseless functions :

 $f_1$ - $f_5$ : separable functions  $f_6$ - $f_9$ : functions with low or moderate conditioning  $f_{10}$ - $f_{14}$ : functions with high conditioning and unimodal  $f_{15}$ - $f_{19}$ : multi-modal functions with adequate global structure

 $f_{20}$ - $f_{24}$ : multi-modal functions with weak global structure

dimensionality : 5-D, 10-D, 20-D, 40-D

evaluation budget :  $75 \cdot n$  (time limitation & slow GPareto)

#### Performance Results



Figure: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimension (FEvals/DIM) for 121 targets with target precision in  $\{0, 10^{-0.19}, 10^{-0.18}, \dots, 10^{0.98}, 10^{0.99}, 10^1\}$  over all the problems in  $n \in \{2, 3, 5, 10, 20\}$ .

#### Performance Results

- Given this expensive budget setting, MAT-DIRCT and MAT-SMS show a comparable performance, outperforming SMS-EGO.
- With more function evaluations, SMS-EGO's performance stagnates.
- On the other hand, MAT-DIRCT and MAT-SMS exhibit a gradual progress with more evaluations.

## Insights & Issues

- Limited evaluation budget  $(75 \cdot n)$  makes it difficult to reach a **conclusive statement**.
- **GPareto** R package:
  - 1. Extremely **slow** in higher dimension: R-MATLAB communication.
  - Several run instances exited with run-time errors (error in optim function)
- Multi-objectifying MATSuMoTo with GOMORS (Akhtar & Shoemaker, JOPT, 2015):
  - 1. Ill-condition behavior after a batch of sampled points.
  - 2. Re-think about what kind of points are used to build the models.

→ 3 → 4 3

## **BMOBench**

- $\circ\,$  Inspired by COCO, we built BMOBench
- $\circ\,$  a platform with 100 MOPs.
- $\circ\,$  data profiles generated in terms of 4 quality indicators.
- Special session at SSCI'2016, Greece.<sup>3</sup> (Deadline: 15-August-2016)
- We invite the multi-objective community to test their published/novel algorithms on these problems.

<sup>3</sup>http://ash-aldujaili.github.io/BMOBench/<□> < ♂> < ≧> < ≧> < ≧> < ≥

# Thank you

Abdullah Al-Dujaili, S. Suresh Multi-objectifying MATSuMoTo

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶