6t GECCO Workshop on
Blackbox Optimization Benchmarking (BBOB):
Welcome and Introduction to COCO/BBOB

The BBOBies
https://github.com/numbbo/coco

y 4

(rezia—

INVENTORS FOR THE DIGITAL WORLD

slides based on previous ones by A. Auger, N. Hansen, and D. Brockhoff

challenging optimization problems
appear in many
scientific, technological and industrial domains

J

Numerical Blackbox Optimization

Optimize f: Q c R" » R

x € R" f(x)eIR"‘>

Practical Blackbox Optimization

Given:

x € R" f(x)eIR"‘>

Not clear:
which of the many algorithms should | use on my problem?

Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder & Mead 1965]

Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods

Evolutionary Algorithms (continuous domain)
* Differential Evolution [Storn & Price 1997]
* Particle Swarm Optimization [Kennedy & Eberhart 1995]
* Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen & Ostermeier 2001]
e Estimation of Distribution Algorithms (EDAS) [Larrafiaga, Lozano, 2002]
* Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
e Genetlc Algoriirirrs [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]

Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder & Mead 1965]

Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)
Differential Evolution [Storn & Price 1997]
Particle Swarm Optimization [Kennedy & Eberhart 1995]
Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen & Ostermeier 2001]
Estimation of Distribution Algorithms (EDAS) [Larrafiaga, Lozano, 2002]
Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
o [Holland 1975, Goldberg 1989]
Simulated annealing [Kirkpatrick et al. 1983]
Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

* choice typically not immediately clear

* although practitioners have knowledge about which
difficulties their problem has (e.g. multi-modality, non-
separability, ...)

Need: Benchmarking

* understanding of algorithms
* algorithm selection

 putting algorithms to a standardized test
* simplify judgement
* simplify comparison
* regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

* choosing (and implementing) problems, performance
measures, visualization, stat. tests, ...

* running a set of algorithms

that's where COCO and BBOB come into play

\,

Comparing Continuous Optimizers Platform
https://github.com/numbbo/coco

automatized benchmarking

How to benchmark algorithms with COCO?

https://github.com/numbbo/coco

."f-_-l\.
| (' | @ GitHub, Inc. (US] | https://github.com/numbbo/coco

[#) Most Visited (' Getting Started |2 algorithms [COmparin... €) numbbo/numbbo - Gi...

O This repository Pull requests Issues Gist Y+

L numbbo / coco ® Unwatch~ 10 d Unstar 9 ¥ Fork 12

<> Code (1) Issues 1M Il Pull requests 1 4~ Pulse i1 Graphs i} Settings
MNumerical Black-Box Optimization Benchmarking Framework http://coco gforge.innia. fr/f — Edit

D 6,931 commits ¥ 11 branches 5 15 releases 13 contributors

Branch: master = New pull request New file Upload files Find file HTTPS ~ https://github.com/numbt [3 3] Download ZIP

5 nikohansen Merge pull request #720 from numbbo/development == Latest commit bcea®b2 5 days ago

B code-experiments modified: code-experiments/build/python/cython/interface.c 5 days ago
8 code-postprocessing Stop condition fixed. 6 days ago
i docs docs/coco-doc edit 7 days ago
i howtos Update release-howto.md 20 days ago
E) clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
E) .hgignore raising an error in bbob2009 logger.c when best value is NULL. Plus s... a year ago
E) AUTHORS minor a month ago
E) LICENSE Create LICENSE 2 months ago
E) README . md Update README .md 10 days ago

E) do.py Added other paths to jdk on mac. 6 days ago

https://github.com/numbbo/coco

s
l.\(' | @ GitHub, Inc, (US) | https://github.com/numbbe/coco c | | CE,SEE‘J’D’]

[#) Most Visited (' Getting Started |2 algorithms [COmparin... €) numbbo/numbbo - Gi...

O This repository Pull requests Issues Gist

Ll numbbo / coco @® Unwatch ~

<> Code (1) Issues 1M Il Pull requests 1 4~ Pulse i1 Graphs i} Settings
MNumerical Black-Box Optimization Benchmarking Framework http://coco gforge.innia. fr/f — Edit

D 6,931 commits ¥ 11 branches 5 15 releases 13 contributors

Branch: master = New pull request New file Upload files Find file HTTPS ~ https://github.com/numbt [3 Download ZIP

5 nikohansen Merge pull request #720 from numbbo/development == Latest commit b

B code-experiments modified: code-experiments/build/python/cython/interface.c 5 days ago
8 code-postprocessing Stop condition fixed. 6 days ago
i docs docs/coco-doc edit 7 days ago
i howtos Update release-howto.md 20 days ago
E) clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
E) .hgignore raising an error in bbob2009 logger.c when best value is NULL. Plus s... a year ago
E) AUTHORS minor a month ago
E) LICENSE Create LICENSE 2 months ago
E) README . md Update README .md 10 days ago

E) do.py Added other paths to jdk on mac. 6 days ago

https://github.com/numbbo/coco

O numbbo/coco: Mumerical .. *x

i,
| (' | @ GitHub, Inc. (US] | https://github.com/numbbo/coco c | | CE,SEE‘J’D’]

[#) Most Visited (' Getting Started |2 algorithms [COmparin... €) numbbo/numbbo - Gi...

L numbbo / coco ® Unwatch~ 10 ¥ Unstar 9

<» Code (1) Issues 1M il Pull requests 1 A Pulse i1 Graphs L} Settings
Numerical Black-Box Optimization Benchmarking Framework htip://coco. gforge.inria.fr/ — Edit

D 6,931 commits ¥ 11 branches 15 releases 13 contributors

Branch: master ~ | BRIV |GG [T New file = Upload files Find file = HTTPS~ nhttps://github.com/numbt [Download ZIP

2% nikohansen Merge pull request #720 from numbbo/development |« Latest commit B

B code-experiments modified: code-experiments/build/python/cython/interface.c 5 days ago
B code-postprocessing Stop condition fixed. 6 days ago
m docs docs/coco-doc edit T days ago
i howtos Update release-howto.md 20 days ago
E) .clang-format raising an error in bbob2009 logger.c when best value is NULL. Plus s... a year ago
E) hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
E) AUTHORS minor a month ago
E) LICENSE Create LICENSE 2 months ago
E) README.md Update README.md 10 days ago
E) dopy Added other paths to jdk on mac. 6 days ago

E) doxygen.ini maoved all files into code-experiments/ folder besides the do.py scrip... 4 months ago

EE README.md

https://github.com/numbbo/coco

O numbbo/coco: Mumerical .. *x

i,
| (' | @ GitHub, Inc. (US] | https://github.com/numbbo/coco c | | CE,SEE‘J’D’]

[#) Most Visited (' Getting Started |2 algorithms [COmparin... €) numbbo/numbbo - Gi...

<> Code (1) Issues 1M Il Pull requests 1 4~ Pulse i1 Graphs i} Settings
Numerical Black-Box Optimization Benchmarking Framework htip://coco. gforge.inria.fr/ — Edit

D 6,931 commits ¥ 11 branches 15 releases 13 contributors

Branch: master ~ | BRIV |GG [T New file = Upload files Find file = HTTPS~ nhttps://github.com/numbt [Download ZIP

2% nikohansen Merge pull request #720 from numbbo/development |« Latest commit B

B code-experiments modified: code-experiments/build/python/cython/interface.c 5 days ago
I code-postprocessing Stop condition fixed. 6 days ago
i docs docs/coco-doc edit 7 days ago
i howtos Update release-howto.md 20 days ago
E) clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
E) .hgignore raising an error in bbob2009 logger.c when best value is NULL. Plus s... a year ago
E) AUTHORS minor a month ago
E) LICENSE Create LICENSE 2 months ago
E) README.md Update README.md 10 days ago
E) dopy Added other paths to jdk on mac. 6 days ago

E) doxygen.ini maoved all files into code-experiments/ folder besides the do.py scrip... 4 months ago

EE README.md

https://github.com/numbbo/coco

9 numbbo/coco: Mumerical ...

i,
l.\(' | @ GitHub, Inc, (US) | https://github.com/numbbe/coco c | | CE,SEE‘J’D’]

Most Visited ' Getting Started |2 algorithms [COmparin... €) numbbo/numbbo - Gi...
Numerical Black-Box Optimization Benchmarking Framework htip://coco. gforge.inria.fr/ — Edit

D 6,931 commits I# 11 branches 15 releases 13 contributors

Branch: master ~ | BRIV |GG [T New file = Upload files Find file = HTTPS~ | https://github.com/numbt Download ZIP

2% nikohansen Merge pull request #720 from numbbo/development |« Latest commit bceae

B code-experiments modified: code-experiments/build/python/cython/interface.c 5 days ago
I code-postprocessing Stop condition fixed. 6 days ago
docs docs/coco-doc edit T days ago
howtos Update release-howto.md 20 days ago
.clang-format raising an error in bbob2009 logger.c when best value is NULL. Plus s... a year ago
_hgignare raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
AUTHORS minor a month ago
LICENSE Create LICENSE 2 months ago
README.md Update README.md 10 days ago
Added other paths to jdk on mac. 6 days ago

maoved all files into code-experiments/ folder besides the do.py scrip... 4 months ago

EE README.md

numbbo/coco: Comparing Continuous Optimizers

https://github.com/numbbo/coco

umbba - Gi...

Upilcad

2% nikohansen Merge pull request #720 from numbbo/development |« Latest commit bcea@b2 5 days ago

B code-experiments modified: code-experiments/build/python/cython/interface.c 5 days ago
I code-postprocessing Stop condition fixed. 6 days ago
docs/coco-doc edit T days ago

Update release-howto.md 20 days ago

.clang-format raising an error in bbob2009 logger.c when best value is NULL. Plus s... a year ago
_hgignare raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
AUTHORS minor a month ago
LICENSE Create LICENSE 2 months ago
README.md Update README.md 10 days ago
do_py Added other paths to jdk on mac. 6 days ago

doxygen.ini maoved all files into code-experiments/ folder besides the do.py scrip... 4 months ago

EE README.md

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in anst ¢ with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous
optimizers, AKA non-linear solvers for numerical optimization. Languages currenily available are

https://github.com/numbbo/coco

'f(' ' @ GitHub, Inc. (US) | https://github.com/numbbeo/coco c | | C®5earch | ﬁ' =] 4 # O
A

Most Visited ' Getting Started |2 algorithms [COmparin... €) numbbo/numbbo - Gi...

i howtos Update release-howto.md 20 days ago
-clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
_hgignore raising an error in bbob2009 logger.c when best value is NULL. Plus s... a year ago
AUTHORS minor a month ago
LICENSE Create LICENSE 2 months ago
README .md Update README .md 10 days ago
do_py Added other paths to jdk on mac. 6 days ago

doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 4 months ago

EE README.md

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in ans1 ¢ with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous
optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

C/C++

Java
MATLAB/Octave
Python

Contributions to link further languages (including a better example in c++) are more than welcome.

For more information,

https://github.com/numbbo/coco

' (‘ ' @ GitHub, Inc. (US) | https://github.com/numbbeo/coco c C®5earch
S

Most Visited (' Getting Started (& algorithms [COmparin... £ numbba/numbba - Gi...

E) doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 4 months ago

EE README.md

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in ans1 ¢ with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous
— i mey. solvers for numerical optimization. Languages currently available are

C/C++

Java
MATLAB/Octave
Python

or languages (including a better example in c++) are more than welcome.
For more information,

= consult the BBOB waorkshops series,

« consider to register here for news,

» see the previous COCO home page here and

+ see the links below to learn more about the ideas behind CoCO.

Requirements

https://github.com/numbbo/coco

' (‘ ' @ GitHub, Inc. (US) | https://github.com/numbbeo/coco c C®5earch
S

Most Visited (' Getting Started (& algorithms [COmparin... £ numbba/numbba - Gi...

1. Check out the Requirements above.
2. Download the COCO framework code from github,

o either by clicking here and unzip the zip file,
o or (preferred ping git clone https://github.com/numbbo/coco.git . This way allows to remain up-to-date
easily (but needs git to be installed). After cloning, git pull keeps the code up-to-date with the latest release.

CAVEAT: this code is still under heavy development The record of official releases can be found here. The latest
release corresponds to the master branch as linked above.

3. Inasystemshell, cd intothe coco Or coco-<version> folder (framework root), where the file do.py can be found.
Type, i.e. execute, one of the following commands once

python do. run-c
python do. run-java
python do. run-matlab
python do. run-octave
python . run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under
code-experiments/build/<language> (<language»=matlab for Octave). python do.py lists all available commands.

4_0n the computer where experiment data shall be post-processed, run

https://github.com/numbbo/coco

' (‘ ' @ GitHub, Inc. (US) | https://github.com/numbbeo/coco c C®5earch
S 1

Most Visited (' Getting Started (& algorithms [COmparin... £ numbba/numbba - Gi...

Getting Started

1. Check out the Requirements above.
2. Download the COCO framework code from github,

o either by clicking here and unzip the zip file,
o or (preferred) by typing git clone https://github.com/numbbo/coco.git . This way allows to remain up-to-date
easily (but needs git to be installed). After cloning, git pull keeps the code up-to-date with the latest release.

CAVEAT: this code is still under heavy development The record of official releases can be found here. The latest
release corresponds to the master branch as linked above.

3. Inasystemshell, cd intothe coco Or coco-<version> folder (framework root), where the file do.py can be found.
Type, i.e. execute, one of the following commands once

.py run-matlab
.py run-octave
.py run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under
code-experiments/build/<language> (<language»=matlab for Octave). python do.py lists all available commands.

4_0n the computer where experiment data shall be post-processed, run

https://github.com/numbbo/coco

' (‘ ' @ GitHub, Inc. (US) | https://github.com/numbbeo/coco c C®5earch
S 1

Most Visited (' Getting Started (& algorithms [COmparin... £ numbba/numbba - Gi...

4_0n the computer where experiment data shall be post-processed, run

python do.py install-postprocessing

to (user-locally) install the post-processing. From here on, do.py has done its job and is only needed again for updating
the builds to a new release.

. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example experiment.py . Run the example experiment (it already is compiled, in case). As the
details vary, see the respective read-me's and/or example experiment files:

o ¢ read me and example experiment

o Java read me and example experiment

o Matlab/Octave read me and example experiment
o python read me and example experiment’

If the example experiment runs, connect your favorite algorithm to Coco: replace the call to the random search optimizer
in the example experiment file by a call to your algorithm (see above). Update the output result_folder | the
algorithm_name and algorithm_info of the observer options in the example experiment file.

Another entry point for your own experiments can be the code-experiments/examples folder.

- Now you can run your favorite algorithm on the bbob-biobj (for multi-objective algorithms) or an the bbeb suite (for
single-objective algorithms). Output is automatically generated in the specified data result_folder .

7. Postprocess the data from the results folder by typing

python -m bbob_pproc [-o OUTPUT_FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]

https://github.com/numbbo/coco

' (‘ ' @ GitHub, Inc. (US) | https://github.com/numbbeo/coco c C®5earch
S 1

Most Visited (' Getting Started (& algorithms [COmparin... £ numbba/numbba - Gi...

4_0n the computer where experiment data shall be post-processed, run

python do.py install-postprocessing

to (user-locally) install the post-processing. From here on, do.py has done its job and is only needed again for updating
the builds to a new release.

. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example experiment.py . Run the example experiment (it already is compiled, in case). As the
details vary, see the respective read-me's and/or example experiment files:

o c read me afjd example experiment

o Java read moroame

o Matlab/Octave read me and example experiment
o python read me and example experiment’

If the example experiment runs, connect your favorite algorithm to Coco: replace the call to the random search optimizer
in the example experiment file by a call to your algorithm (see above). Update the output result_folder | the
algorithm_name and algorithm_info of the observer options in the example experiment file.

Another entry point for your own experiments can be the code-experiments/examples folder.

- Now you can run your favorite algorithm on the bbob-biobj (for multi-objective algorithms) or an the bbeb suite (for
single-objective algorithms). Output is automatically generated in the specified data result_folder .

7. Postprocess the data from the results folder by typing

python -m bbob_pproc [-o OUTPUT_FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]

example_experiment.c

/* Iterate over all problems in the suite */
while ((PROBLEM = coco_suite get next problem(suite, observer)) != NULL)

{

size t dimension = coco_problem get dimension (PROBLEM) ;

/* Run the algorithm at least once */
for (run = 1; run <= 1 + INDEPENDENT RESTARTS; run++) {

size t evaluations_done = coco_problem get evaluations (PROBLEM) ;

long evaluations_ remaining =
(long) (dimension * BUDGET MULTIPLIER) - (long)evaluations_done;

if (... || (evaluations remaining <= 0))
break;

my random search(evaluate function, dimension,
coco_problem get number of objectives (PROBLEM) ,
coco_problem get smallest values of interest (PROBLEM),
coco_problem get largest values of interest (PROBLEM),
(size_t) evaluations_remaining,
random generator) ;

. _____________d

example_experiment.c

/* Iterate over all problems in the suite */
while ((PROBLEM = coco_suite get next problem(suite, observer)) != NULL)

{

size t dimension = coco_problem get dimension (PROBLEM) ;

/* Run the algorithm at least once */
for (run = 1; run <= 1 + INDEPENDENT RESTARTS; run++) {

size t evaluations_done = coco_problem get evaluations (PROBLEM) ;

long evaluations_ remaining =
(long) (dimension * BUDGET MULTIPLIER) - (long)evaluations_done;

if (... || (evaluations remaining <= 0))
break;

[my random search (ialuate_function , dimension,

oblem get number of objectives (PROBLEM) ,
coco_problem get smallest values of interest (PROBLEM),
coco_problem get largest values of interest (PROBLEM),
(size_t) evaluations_remaining,
random generator) ;

. _____________d

uuuu_ru.

https://github.com/numbbo/coco

' (‘ ' @ GitHub, Inc. (US) | https://github.com/numbbeo/coco c C®5earch
S

Most Visited Getting Started 'iz algorithms [COmparin... O numbbo/numbbo - Gi..

SLEUT DL ITEnis Wi SLgul DO LT o W e sl vl DI RS 1T U A TR TS A e i e

Another entry point for your own experiments can be the code-experiments/examples folder.

- Now you can run your favorite algorithm on the bbob-biobj (for multi-objective algorithms) or on the bbob suite (for
single-objective algorithms). Output is automatically generated in the specified data result_folder .

. Postprocess the data from the results folder by typing

python -m bbob_pproc [-o OUTPUT_FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]

The name bbob_pproc will become cocopp in future. Any subfolder in the folder arguments will be searched for logged
data. That is, experiments from different batches can be in different folders collected under a single "root"
YOURDATAFOLDER folder. We can also compare more than one algorithm by specifying several data result folders
generated by different algorithms.

A folder, ppdata by default, will be generated, which contains all output from the post-processing, including a
ppdata.html file, useful as main entry point to explore the result with a browser. Data might be overwritten, it is
therefore useful to change the output folder name with the -o ouTPUT_FoLDERNAME option.

For the single-objective bbob suite, a summary pdf can be produced via LaTeX. The corresponding templates in ACM
format can be found in the code-postprocessing/latex-templates folder. LaTeX templates for the multi-objective
bbob-biobj suite will follow in a later release. A basic html output is also available in the result folder of the
postprocessing (file templateBBOBarticle.html).

- Once your algorithm runs well, increase the budget in your experiment script, if necessary implement randomized
independent restarts, and follow the above steps successively until you are happy.

If you detect bugs or other issues, please let us know by opening an issue in our issue tracker at hitps://github.com/numbbo
/cocofissues.

result folder

al _ud ad

Organize = Include in library = Share with = Mew folder

i Favorites
Bl Desktop
J. Downloads

%# Dropbox
£l Recent Places

- Libraries
@ Documents
i Git
J’i Music
[& Pictures
=1 Subversion

H videos

#d Homegroup

' 3 iterns

Mame

. R5_on_bbob-bichj-3edfunevals

o bbob_pproc_commands.tex

Date modified

25/02/2016 21:33
25/02/2016 21:37

Type

File folder

LaTeX Document

|| ppdata.html

25/02,/2016 21:32

Firefox HTML Doc...

automatically generated results

" Post processing results

<= @ file///C:/Users/dimo/Desktop/numbbo-github/bbob-biobj-data/data/ppdata/ppdata.html c ‘ ‘O\ Search
P; 9) p [|

Most Visited Getting Started k:'? algorithms [COmparin... o numbbo/numbbo - Gi...

Post processing results

Single algorithm data

RS on bbob-biobj-3e4funevals

automatically generated results

ﬁ n RS, templateBEOBarticle

' (' ' 2 | @ filey/fC:/Users/dimo/Desktop/numbbo-github/bbob-biokj-data/data/ppdata/R5_on_bbob-biok c Q Search

Most Visited Getting Started rll.:.'a:! algorithms [COmparin... O numbbo/numbbo - Gi..
RS

[Home]
[Runleneth distribution plois]

Expected number of f~evaluations to reach target

4 Sphere/Rosenbrock

1 SpherelSphere
: Pt

=3
pad
ke

bsolute targets

bsolute targets

10 20 2 3 5 10 20 40
5 Sphere/Sharp ridge 6 Sphere/Different Powers

10 20
7 Sphere/Rastrigin

absolute targets
2 3 5 10 20 40

8 Sphere/Schaffer F7

ey

w

bsolute targets bsolute targets

bsolute targets

5
4
3
2
1
0

bsolute targets

2 3 5 10 20 40 2 3 5 10 20 40
9 Sphere/S5chwefel -~ 10 Sphere/Gallagher 101

2 3 5 10 20 40
11 sep. Ellipsoid/sep. Ellipsoid

2 3 5 10 20 40
182 sep. Ellipsoid/Attractive sector

1

automatically generated results

pprldmany

e -
l:_\(' I | @ filey/Ci/Users/dimo/Desktop/numbbo-github/bbob-biokj-data/data/ppdata/R5_on_bbob-biok c [Q Search

Most Visited ' Getting Started |2 algorithms [COmparin... €) numbbo/numbbo - Gi...

[Other plots]
Scaling of ERT with dimension

3 Sphere/Attractive sector
s -

=
[=]

=
=]

1 Sphere/Sphere 2 Sphere/sep. Ellipsoid
A R i

=
=)
=
=)

o
<
s

portion of function+target pairs
=
e}

portion of function+target pairs
o
o

RN .:-r'-".f;' A
2 3 4 5
logl0 of (# fevals / dimension) logl0 of (# f-evals / dimension)
4 Sphere/Rosenbrock _5 Sphere/Sharp ridge

Prgportion of function+target pairs

Prp

VED T

o
@

=
.

o
ta
o
mJ

E
m
=9
o
w
=y
b
+
c
k=]
et
o
c
2
s
c
k=]
=
=

ortion of function+target pairs
ortion of function+target pairs
=}
o

i

Qﬁe—‘ & - P—e110-
2 3 4 5 1 2 3 4 5 6 7 8
logl0 of (# f-evals / dimension) logl0 of (# f-evals [dimension) logl0 of {# f-evals / dimension)
7 Sphere/Rastrigin 8 Sphere/S5chaffer F7 9 Sphere/Schwefel
SPETEIEIREaE SRR VI R

3

P
=
=)

P
P

=
=
=]
=
=]

7 f8 fo

o
ta
e
oo

=
o)
=
o

S
'S
<
=~

n of function+target pairs
n of function+target pairs
n of function+target pairs

doesn't look too complicated, does it?

[the devil is in the details ©]

so far (i.e. before 2016):

data for about 150 algorithm variants
118 workshop papers
by 79 authors from 25 countries

Measuring Performance

On

* real world problems
* expensive
* comparison typically limited to certain domains
e experts have limited interest to publish

 "artificial" benchmark functions
* cheap
e controlled
* data acquisition is comparatively easy
* problem of representativeness

Test Functions

 define the "scientific question”
the relevance can hardly be overestimated
* should represent "reality"
* are often too simple?
remind separability

a3 number of testbeds are around

* account for invariance properties

prediction of performance is based on “similarity”,
ideally equivalence classes of functions

Available Test Suites in COCO

* bbob 24 noiseless fcts 140+ algo data sets
* bbob-noisy 30 noisy fcts 40+ algo data sets
* bbob-biobj 55 bi-objective fcts in 2016

15 algo data sets
Under development:
* large-scale versions
e constrained test suite

Long-term goals:

e combining difficulties

e almost real-world problems
* real-world problems

How Do We Measure Performance?

Meaningful quantitative measure
e guantitative on the ratio scale (highest possible)

"algo A is two times better than algo B" is a meaningful statement
e assume a wide range of values

* meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

runtime or first hitting time is the prime candidate
(we don't have many choices anyway)

How Do We Measure Performance?

Two objectives:

* Find solution with small(est possible) function/indicator
value

* With the least possible search costs (humber of function
evaluations)

For measuring performance: fix one and measure the other

Measuring Performance Empirically

convergence graphs is all we have to start with...

get

fixed bud

quality indicator (to be minimized)

T ——— = — -5 B
|f
... 1:................... e e e e e
i
i
!
i
'i

number of function evaluations

ECDF:
Empirical Cumulative Distribution Function of the Runtime
[aka data profile]

A Convergence Graph .

110

100

90

80

function value

70

60

2 3 4
log,,(function evaluations)

First Hitting Time is Monotonous

110

100L _______________ — S —_—_ _—

o0 M

function value

o R N — .

7 - — — S N — — -

60

log,,(function evaluations)

15 Runs

3
log,,(function evaluations)

2

anjeA uollduny

15 Runs £ 15 Runtime Data Points

100

90

80

function value

70

60

1 2 5 4
log,,(function evaluations)

Empirical Cumulative Distribution

110 pymry the of run
lengths to reach
100 the target
@ . has for each
= 90 data. point a
z vertical step of
= constant size
c 80 .
2 . displays for each
x-value (budget)

70 the count of

observations to
the left (first
hitting times)

60

log,o(function evaluations)

e.g. 60% of the runs need between 2000 and 4000 evaluations
80% of the runs reached the target

Reconstructing A Single Run

110

oof N

90+

function value

o —— N — .

60

T 2 3 4
log,,(function evaluations)

Reconstructing A Single Run

50 equally
spaced targets

function value

log,,(function evaluations)

Reconstructing A Single Run

110py—

oo} o

YA k" T

function value

o 3 N — .

7 - — — S 3 — — -

60

T 2 3 4
log,,(function evaluations)

function value

Reconstructing A Single Run

110 pv—

w0
o

0
o

log,,(function evaluations)

Reconstructing A Single Run

110 pv—

ol _— —_— - ™

function value

sol S— T— - o]

log,o(function evaluations)

the
makes a step for
each star, is
monotonous
and displays for
each budget the
fraction of
targets achieved
within the
budget

Reconstructing A Single Run

110

0ok N

function value

60

00l e
8oL

o) NS - SO S SN N SRS RN S

T 2 3 4
log,o(function evaluations)

the ECDF recovers

the monotonous
graph,
discretised and
flipped

Reconstructing A Single Run

110

function value

60

sob]

w L

2 3 4
log,o(function evaluations)

the ECDF recovers
the monotonous
graph,
discretised and
flipped

Aggregation

15 runs

3

2
log,,(function evaluations)

anjeA uollduny

Aggregation

110
15 runs
100 50 targets
v i :l..-".;'_::i:!f:: e
=3 AN — -~
© 90 = ATESTER
-
c
S
E 80
=
70
007 > 3 g

log,,(function evaluations)

Aggregation

110 g

100+

function value

70¢F

60

90+

80+

log,o(function evaluations)

15 runs

50 targets

Aggregation

110 g

100+

function value

70¢F

60

90+

80+

log,o(function evaluations)

15 runs

50 targets

Aggregation

110

100

90

80

function value

70

..

60—

o

» 1
v
AN A

2 3 4
log,,(function evaluations)

50 targets from
15 runs

...integrated in a
single graph

Interpretation

100

90

80

function value

70

..

P
60— 1 i i ; VLY s 1 PN VY,
2 3 4

log,,(function evaluations)

50 targets from
15 runs
integrated in a
single graph

.| average log runtime

(or geometric avg.
runtime) over all
targets (difficult and
easy) and all runs

Fixed-target: Measuring Runtime

ps(Algo A) << 1, fast convergence

ps(Algo B) ~ 1__, slow convergence

Fixed-target: Measuring Runtime

e Algo Restart A:

p,(Algo Restart A) = 1

 Algo Restart B:

p,(Algo Restart A) = 1

Fixed-target: Measuring Runtime

* Expected running time of the restarted algorithm:

1-p
E[RTT] = D - E[RTunsuccessful] + E[RTsuccessful]
S

e Estimator average running time (aRT):

__ #successes
Ps =

#runs

RT,,,succ = Average evals of unsuccessful runs

RT, .. = Average evals of successful runs

total #evals

aRT =
#successes

ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated restarted
algorithms:

.. 15phere/Sphere
bbob:biobj + f1 | | | 375
10 instances | | | |

=
o

O
0o

O
)

o
N

Proportion of function+target pairs

4 5 6 71 8
loal0 of (# f-evals / dimension)

0 1 2

Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

* never aggregate over dimension
* but often over targets and functions

* can show data of more than 1 algorithm at a time
1.0

t pairs

150 algorithms
from BBOB-2009
till BBOB-2015

[

Proporti

More Automated Plots...

..but no time to explain them here ®

1 Sphere/Sphere

—.— DEMO . -~
1t + GA- MULTIOBJ(NSGAuH)

HMO-CMA-ES

010 10, 10 |nstances -

2

3

5

10

= o =
I o o0

ot
N

roportion of function+target pairs

13 sep;}EIIipsoi‘d/Rosen‘brock

g:

bbob bIObJ f1, f2 f11 |
10 |n$tances ' :

10.0.79711
1 1

ﬁ

loal0 of (# f-evals / dimension)

1 2 3 4 5 6 7 8

More Automated Plots...

10! ! ‘ ‘ ‘ ‘ ‘ !
10°
..butnotimet _|
7. 1 Sphere/Sph 5 100 sep. Ellipsoid/Rosenbrock
£ =4 4
Y It SO A SR = 103
10
S 1 ‘
105 2 il ;0 0(‘]1',9"1 ;2 ;3 ;4
10 10 10 10 10 10 10
9 number of function evaluations / dimension
8
£9
° 1 Sphere/Sphere
6
G 2-D ' ’
@ > ISR L S S A N S
) 3- !
(U] :
4 :
@ 5-D
Eoic I © JESC. N7« 5 K S N R S I s =gy, b~ I I S S 1
S S 10-D
~ 2} Ic_c ;
©
—
—
|_
o
L
o
: ; Eo.o.mné i i —
o2 S e s e 8o
loal0 of (# f-evals / dimensic ~ ~ 3) 1

T AN Al Fm g =)

The single-objective BBOB functions

bbob Testbed

e 24 functions in 5 groups:

1 Separable Functions 4 Multi-modal functions with adequate global structure
f1 |@ 5Sphere Function f15 @ Rastrigin Function

f2 |@Ellipsoidal Function f1s |@ Weierstrass Function

f3 | @Rastrigin Function f17 @ Schaffers F7 Function

f4 @ Biiche-Rastrigin Function fig @ sSchaffers F7 Functions, moderately ill-conditioned
fz |@Linear Slope f19 @@ Composite Griewank-Rosenbrock Function FEBF2
2 Functions with low or moderate conditioning 5 Multi-modal functions with weak global structure

fo |@Attractive Sector Function f20 @ Schwefel Function

f7 |@ 5tep Ellipsoidal Function f21 @ Gallagher's Gaussian 101-me Peaks Function

fa |@PRosenbrock Function, original f22 @ Gallagher's Gaussian 21-hi Peaks Function

fo |@Rosenbrock Function, rotated f23 @Katsuura Function

3 Functions with high conditioning and unimodal f24 @ Lunacek bi-Rastrigin Function

f10 |@Ellipsoidal Function

f11 | @Discus Function

f12 @ EBent Cigar Function

f13 |@ 5Sharp Ridge Function

f14 @ Different Powers Function

* 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

Notion of Instances

* All COCO problems come in form of instances
* e.g. as translated/rotated versions of the same
function
* Prescribed instances typically change from year to year
* avoid overfitting
* 5 instances are always kept the same

Plus:

* the bbob functions are locally perturbed by non-linear
transformations

Notion of Instances

i TRAR E R N = I

+ f,, (Ellipsoid) /— 4 fic (Rastrigin) ¢ \\‘ﬁ\
N .\\p'
AN

bbob-noisy Testbed

* 30 functions with various kinds of noise types and
strengths
* 3 noise types: Gaussian, uniform, and seldom Cauchy
Functions with moderate noise
Functions with severe noise
Highly multi-modal functions with severe noise

bbob functions included: Sphere, Rosenbrock, Step ellipsoid,
Ellipsoid, Different Powers, Schaffers' F7, Composite Griewank-
Rosenbrock

* 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

the recent extension to
multi-objective optimization

bbob-biobj Testbed (new in 2016)

* 55 functions by combining 2 bbob functions

1 Separable Functions 4 Multi-modal functions with adequate global structure
f1 |@s5Sphere Function v f15 @Rastrigin Function

f2 | @Ellipsoidal Function v f16 @ Weierstrass Function

f3 |@Rastrigin Function f17 | @ Schaffers F7 Function /

f4 |@Biiche-Rastrigin Function f18 @ sSchaffers F7 Functions, moderately ill-conditioned
f5 | @Linear Slope f19 @@ Composite Griewank-Rosenbrock Function FEBF2
2 Functions with low or moderate conditioning 5 Multi-modal functions with weak global structure

f6 |@Attractive Sector Function v~ f20 @ Schwefel Function /

f7 @ Step Ellipsoidal Function f21 @ Gallagher's Gaussian 101-me Peaks Function ./
f8 |@Rosenbrock Function, original v f22 @ Gallagher's Gaussian 21-hi Peaks Function

fo @ Rosenbrock Function, rotated f23 @ Katsuura Function

3 Functions with high conditioning and unimodal f24 @Lunacek bi-Rastrigin Function

f10 @Ellipsoidal Function

f11 | @Discus Function

f12 @ EBent Cigar Function

f13 | @sSharp Ridge Functiony”

f14 @nDifferent Powers Functiony/

bbob-biobj Testbed (new in 2016)

* 55 functions by combining 2 bbob functions

1 Separable Functions 4 Multi-modal functions with adequate global structure
f1 |@s5Sphere Function v f15 @Rastrigin Function

f2 | @Ellipsoidal Function v f16 @ Weierstrass Function

f3 |@Rastrigin Function f17 | @ Schaffers F7 Function /

f4_|@Buche Rastrigin Function i 2 fo fs fiza fuu fis fuu fo fa
f5 | @Linear Slope fi i P B M4 f5 f6 7 B8 0 f0
2 Functions with low or moderate conditionir

f6 @Attractive Sector Function v/ fa fil f12 f13 f14 f15 fle f17 f18 f19
7 | @step Ellipsoidal Function fe f20 f21 f22 23 f24 125 f26 {27
f8 | @Rosenbrock Function, original v/ fs f28 f29 30 31 32 f33 f34
fo |@Rosenbrock Function, rotated f13 f35 f36 f37 38 f39 f40
3 Functions with high conditioning and unime [14 f41 f42 f43 {44 {145
f10 @Ellipsoidal Function fis fae f47 f48 f49
f11 @Discus Function fi7 fso fs51 f52
f12 @ EBent Cigar Function f?ﬂ f53 f54
f13 | @sSharp Ridge Functiony” [f55

f14 @nDifferent Powers Functiony/

bbob-biobj Testbed (new in 2016)

* 55 functions by combining 2 bbob functions

e 15 function groups with 3-4 functions each

e separable —separable, separable — moderate, separable - ill-
conditioned, ...

* 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

e instances derived from bbob instances:

 more or less 2i+1 for 1st objective and 2i+2 for 2nd objective
e exceptions: instances 1 and 2 and when optima are too close

* no normalization (algo has to cope with different orders of
magnitude)

* for performance assessment: ideal/nadir points known

bbob-biob4 Testbed (cont'd)

e Pareto set and Pareto front unknown

* but we have a good idea of where they are by running quite
some algorithms and keeping track of all non-dominated points
found so far

* Various types of shapes

Ty

bbob-biob4 Testbed (cont'd)

Example: sphere with sphere

6 projection of decision space for bbob-biobj f, (5-D, instance 1)

al
_
5| bbob-biobj f, along linear search space directions (5-D, instance 1)
« reference set (697 of 2773576 point ool = cutssthro single o.ptima
0 —— cuts through single optima ugh b(.Jth optima
—— cut through both optima 0 random directions
two random directions —100 -
-2+ g
S -110}
O
2
o)
4L g
5 ~120f
e
o
_6) ‘ 0.0.7971 ‘ | | D —130|
—6 —4 -2 0 2 4)
I1
-140}
-150}
X

I I 0 1 I 1 1
400 410 420 430 440 450 460
first objective

bbob-biob4 Testbed (cont'd)

Example: sharp ridge with sharp ridge

projection of decision space for bbob-biobj fi; (5-D, instance 1)

reference set (1230 of 1722826 points)
cuts through single optima

cut through both optima

two random directions

H bbob-biobj f;5 along linear search space directions (5-D, instance 1)

3500

3000
]
>
2
(9]
@ 2500
o
o
©
c
O 2000
(9]
. . 0.0.7971 ‘ . . 3
-4 -2 0 2 4
T 1500

1000

cuts through single optima
cut through both optima
two random directions

Q.U‘

1
500

| 1 |
1000 1500 2000 2500

first objective

bbob-biob4 Testbed (cont'd)

Example: sphere with Gallagher 101 peaks

projection of decision space for bbob-biobj f,, (5-D, instance 1)

6
4
5| bbob-biobj f,, along linear search space directions (5-D, instance 1)
—— cuts through single optima
100} — cut through both optima]
or two random directions
80|
2k g
= 60}
« reference set (1095 of 1378108 point _5
—al — cuts through single optima -8 a0l
——— cut through both optima i
two random directions o]
0.0.7971 Y20+
—6 I ! ! L L @
-6 -4 -2 0 2 4 n
I1 ol
_20 L

1 1 1 1 1 1 |
400 410 420 430 440 450 460
first objective

bbob-biob4 Testbed (cont'd)

Example: Schaffer F7, cond. 10 with Gallagher 101 peaks

projection of decision space for bbob-biobj f5, (5-D, instance 1)

bbob-biobj fs5, along linear search space directions (5-D, instance 1)

80+ — cuts through single optima
—— cut through both optima

60 two random directions

[
2

.0

» reference set (585 of 444135 point ¢

-4l |=——=cuts-through single optima -8
—— cut through both optima °

two random directions o]

0.0.7971 H U

—6 I L L L L @
-6 —4 -2 0 2 4 n

I

first objective

Bi-objective Performance Assessment

algorithm quality =

gE—

normalized™ hypervolume (HV)
of all non-dominated solutions

if a point dominates nadir

closest normalized™* negative distance
to region of interest [0,1]?
if no point dominates nadir

—

* such that ideal=[0,0] and nadir=[1,1]

AL,
JZnadir
3
AL,
TI ? -
Znadir |-
______ ;

Bi-objective Performance Assessment

We measure runtimes to reach (HV indicator) targets:
* relative to a reference set, given as the best Pareto front

approximation known (since exact Pareto set not known)

* for the workshop: before workshop values

* from now on: updated current best values incl. all non-
dominated points found by the 15 workshop algos:
will be available soon and hopefully fixed for some time

* actual absolute hypervolume targets used are

HV(refset) — targetprecision

with 58 fixed targetprecisions between 1 and -10* (same
for all functions, dimensions, and instances) in the displays

and now?

BBOB-2016

Enjoy the talks in this and the next two slots:

opief kel The BBOBies: Introduction to Blackbox Optimization Benchmarking

Dk BT Tea TuSar®, Bogdan Filipic: Performance of the DEMO algorithm on the bi-objective BBOB test suite

09:55 - 10:20 llya Loshchilov, Tobias Glasmachers*: Anytime Bi-Objective Optimization with a Hybrid Multi-Objective
CMA-ES (HMO-CMA-ES)

b sl e T The BBOBIes: Session Introduction

Cheryl Wong™*, Abdullah Al-Dujaili, and Suresh Sundaram: Hypervolume-based DIRECT for Multi-
Objective Optimisation

Abdullah Al-Dujaili* and Suresh Sundaram: A MATLAB Toolbox for Surrogate-Assisted Multi-Objective
Optimization: A Preliminary Study

Oswin Krause*, Tobias Glasmachers, Nikolaus Hansen, and Christian Igel: Unbounded Population MO-
CMA-ES for the Bi-Objective BBOB Test Suite

MThe BBOBies: Session Wrap-up

s The BBOBies: Session Introduction

Kouhei Nishida* and Youhei Akimoto: Evaluating the Population Size Adaptation Mechanism for CMA-
ES

The BBOBies: Wrap-up of all BBOB-2016 Results

Thomas Weise*: optimizationBenchmarking.org: An Introduction

IEEEELREEEN Open Discussion

14:15 - 14:40

http://coco.gforge.inria.fr/

" \Z start [COmparing Continu... x\+
{ (' ~7 cccc.rgfcrrgre.inria.fr I e Csrifsr:h ﬁ B 9 3 & O

[8) Most visited @ Getting Started ';, algorithms [COmparin... O numbbo/numbboe - Gi...

>

[[start]] COMPARING CONTINUOUS OPTIMISERS: COCO

m

[@, show pagesource [&] Old revisions [%] Recent changes @ Sitemap & Login

Search b

COCO (COmparing Continuous Optimisers)
(24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,24, 24

is a platform for systematic and sound BROPAMAES Navigation
2 " AMaLGIM IDEA
comparisons of real-parameter global P oM 10 = Home
optimisers. COCO provides benchmark " T ﬂ.’é’;@ S CMAES = @ Documentation
: % 4 0.8 ALPS.

L‘ function testbeds, experimentation /52&'1‘5 £0A ® download latest old code
templates which are easy to parallelize, z - A Runes = @ new code homepage
and tools for processing and visualizing E;M Sami = @ download new code

| data generated by one or several 3 B ooes directly

1Doe!
optimizers. The COCO platform has been 30‘ s = @BBOB 2016
used for the Black-Box-Optimization- E juos m BBOB 2015 @ GECCO
Benchmarking (BBOB) workshops that took ock = Algorithms
place during the GECCO conference in o gnc m Results
2009, 2010, 2012, 2013 and 2015. It was ®m Schedule
also used at the IEEE Congress on o = Downloads

0 3
10° 10w 1w 1w 10 1wt 10 1

Evolutionary Computation (CEC'2015) in Chadalig 1Aag 1SRG ® BBOB 2015 @ CEC
Sendai, Japan. The COCO source code is m Algorithms
available at the downloads page. m Results

= Downloads

u " i .
@ Black-Box th|m|zat|on Benchmarking (BBOB) 2016 = BEOB 2013
m Black-Box Optimization Benchmarking (BBOB) 2015 = Algorithms
m CEC'2015 special session on Black-Box Optimization Benchmarking (CEC-BBOB 2013) " R"-:u!ts
m Black-Box Optimization Benchmarking (BBOB) 2013 = S_-;wdul
chedule
® Black-Box Optimization Benchmarking (BBOB) 2012
- 5 ! = Downloads
= Black-Box Optimization Benchmarking (BBOB) 2010
4 = BBOB 2012
® Black-Box Optimization Benchmarking (BBOB) 2009
® Algorithms
= Downloads and documentations 3
= Results
To subscribe to (or unsubscribe from) the bbob discussion mailing list follow this link @ http://lists.Iri.fr = Downloads
/cgi-bin/mailman/listinfo/bbob-discuss . = BBOB 2010
® Results

To receive announcements related to the BBOB workshops simply send an email to BBOB team m Downloads b

by the way...

we are hiring!

at the moment:
1 engineer position for 1 year in Paris
+ potential PhD, postdoc, and internship positions

if you are interested, please talk to:

Anne Auger or Dimo Brockhoff

