
6th GECCO Workshop on
Blackbox Optimization Benchmarking (BBOB):

Welcome and Introduction to COCO/BBOB

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

GECCO '14, Jul 12-16 2014, Vancouver, BC, Canada

ACM 978-1-4503-2881-4/14/07.

http://dx.doi.org/10.1145/2598394.2605339

The BBOBies
https://github.com/numbbo/coco

slides based on previous ones by A. Auger, N. Hansen, and D. Brockhoff

challenging optimization problems
appear in many

scientific, technological and industrial domains

Optimize 𝑓: Ω ⊂ ℝ𝑛 ↦ ℝ𝑘

derivatives not available or not useful

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Numerical Blackbox Optimization

Given:

Not clear:

which of the many algorithms should I use on my problem?

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Practical Blackbox Optimization

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder & Mead 1965]
Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)
• Differential Evolution [Storn & Price 1997]
• Particle Swarm Optimization [Kennedy & Eberhart 1995]
• Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen & Ostermeier 2001]
• Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002]
• Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
• Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]
Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder & Mead 1965]
Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)
• Differential Evolution [Storn & Price 1997]
• Particle Swarm Optimization [Kennedy & Eberhart 1995]
• Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen & Ostermeier 2001]
• Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002]
• Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
• Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]
Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

• choice typically not immediately clear
• although practitioners have knowledge about which

difficulties their problem has (e.g. multi-modality, non-
separability, ...)

Numerical Blackbox Optimizers

• understanding of algorithms

• algorithm selection

• putting algorithms to a standardized test
• simplify judgement

• simplify comparison

• regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

• choosing (and implementing) problems, performance
measures, visualization, stat. tests, ...

• running a set of algorithms

Need: Benchmarking

that's where COCO and BBOB come into play

Comparing Continuous Optimizers Platform

https://github.com/numbbo/coco

automatized benchmarking

How to benchmark algorithms with COCO?

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

example_experiment.c

/* Iterate over all problems in the suite */

while ((PROBLEM = coco_suite_get_next_problem(suite, observer)) != NULL)

{

size_t dimension = coco_problem_get_dimension(PROBLEM);

/* Run the algorithm at least once */

for (run = 1; run <= 1 + INDEPENDENT_RESTARTS; run++) {

size_t evaluations_done = coco_problem_get_evaluations(PROBLEM);

long evaluations_remaining =

(long)(dimension * BUDGET_MULTIPLIER) – (long)evaluations_done;

if (... || (evaluations_remaining <= 0))

break;

my_random_search(evaluate_function, dimension,

coco_problem_get_number_of_objectives(PROBLEM),

coco_problem_get_smallest_values_of_interest(PROBLEM),

coco_problem_get_largest_values_of_interest(PROBLEM),

(size_t) evaluations_remaining,

random_generator);

}

example_experiment.c

/* Iterate over all problems in the suite */

while ((PROBLEM = coco_suite_get_next_problem(suite, observer)) != NULL)

{

size_t dimension = coco_problem_get_dimension(PROBLEM);

/* Run the algorithm at least once */

for (run = 1; run <= 1 + INDEPENDENT_RESTARTS; run++) {

size_t evaluations_done = coco_problem_get_evaluations(PROBLEM);

long evaluations_remaining =

(long)(dimension * BUDGET_MULTIPLIER) – (long)evaluations_done;

if (... || (evaluations_remaining <= 0))

break;

my_random_search(evaluate_function, dimension,

coco_problem_get_number_of_objectives(PROBLEM),

coco_problem_get_smallest_values_of_interest(PROBLEM),

coco_problem_get_largest_values_of_interest(PROBLEM),

(size_t) evaluations_remaining,

random_generator);

}

https://github.com/numbbo/coco

result folder

automatically generated results

automatically generated results

automatically generated results

doesn't look too complicated, does it?

[the devil is in the details ]

so far (i.e. before 2016):

data for about 150 algorithm variants

118 workshop papers

by 79 authors from 25 countries

On

• real world problems
• expensive

• comparison typically limited to certain domains

• experts have limited interest to publish

• "artificial" benchmark functions
• cheap

• controlled

• data acquisition is comparatively easy

• problem of representativeness

Measuring Performance

• define the "scientific question"

the relevance can hardly be overestimated

• should represent "reality"

• are often too simple?

remind separability

• a number of testbeds are around

• account for invariance properties

prediction of performance is based on “similarity”,
ideally equivalence classes of functions

Test Functions

Available Test Suites in COCO
• bbob 24 noiseless fcts 140+ algo data sets

• bbob-noisy 30 noisy fcts 40+ algo data sets

• bbob-biobj 55 bi-objective fcts in 2016

15 algo data sets

Under development:

• large-scale versions

• constrained test suite

Long-term goals:

• combining difficulties

• almost real-world problems

• real-world problems

new

Meaningful quantitative measure
• quantitative on the ratio scale (highest possible)

"algo A is two times better than algo B" is a meaningful statement

• assume a wide range of values

• meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

How Do We Measure Performance?

runtime or first hitting time is the prime candidate
(we don't have many choices anyway)

Two objectives:

• Find solution with small(est possible) function/indicator
value

• With the least possible search costs (number of function
evaluations)

For measuring performance: fix one and measure the other

How Do We Measure Performance?

convergence graphs is all we have to start with...

Measuring Performance Empirically

ECDF:

Empirical Cumulative Distribution Function of the Runtime

[aka data profile]

A Convergence Graph
A Convergence Graph

First Hitting Time is Monotonous

15 Runs

target

15 Runs ≤ 15 Runtime Data Points

Empirical CDF
1

0.8

0.6

0.4

0.2

0

the ECDF of run
lengths to reach
the target

● has for each
data point a
vertical step of
constant size

● displays for each
x-value (budget)
the count of
observations to
the left (first
hitting times)

Empirical Cumulative Distribution

e.g. 60% of the runs need between 2000 and 4000 evaluations
e.g. 80% of the runs reached the target

Reconstructing A Single Run

50 equally
spaced targets

Reconstructing A Single Run

Reconstructing A Single Run

Reconstructing A Single Run

the empirical CDF
makes a step for
each star, is
monotonous
and displays for
each budget the
fraction of
targets achieved
within the
budget

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

the ECDF recovers
the monotonous
graph,
discretised and
flipped

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

the ECDF recovers
the monotonous
graph,
discretised and
flipped

15 runs

Aggregation

15 runs

50 targets

Aggregation

15 runs

50 targets

Aggregation

15 runs

50 targets

ECDF with 750
steps

Aggregation

50 targets from
15 runs

...integrated in a
single graph

Aggregation

area over the ECDF
curve

=
average log runtime

(or geometric avg.
runtime) over all

targets (difficult and
easy) and all runs

50 targets from
15 runs
integrated in a
single graph

Interpretation

Fixed-target: Measuring Runtime

Fixed-target: Measuring Runtime

• Algo Restart A:

• Algo Restart B:

𝑹𝑻𝑨
𝒓

ps(Algo Restart A) = 1

𝑹𝑻𝑩
𝒓

ps(Algo Restart A) = 1

Fixed-target: Measuring Runtime

• Expected running time of the restarted algorithm:

𝐸 𝑅𝑇𝑟 =
1 − 𝑝𝑠
𝑝𝑠
𝐸 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 + 𝐸[𝑅𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙]

• Estimator average running time (aRT):

 𝑝𝑠 =
#successes

#runs

 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐 = Average evals of unsuccessful runs

 𝑅𝑇𝑠𝑢𝑐𝑐 = Average evals of successful runs

𝑎𝑅𝑇 =
total #evals

#successes

ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated restarted
algorithms:

Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

• never aggregate over dimension

• but often over targets and functions

• can show data of more than 1 algorithm at a time

150 algorithms
from BBOB-2009

till BBOB-2015

...but no time to explain them here 

More Automated Plots...

...but no time to explain them here 

More Automated Plots...

The single-objective BBOB functions

• 24 functions in 5 groups:

• 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

bbob Testbed

• All COCO problems come in form of instances

• e.g. as translated/rotated versions of the same
function

• Prescribed instances typically change from year to year

• avoid overfitting

• 5 instances are always kept the same

Plus:

• the bbob functions are locally perturbed by non-linear
transformations

Notion of Instances

• All COCO problems come in form of instances

• e.g. as translated/rotated versions of the same
function

• Prescribed instances typically change from year to year

• avoid overfitting

• 5 instances are always kept the same

Plus:

• the bbob functions are locally perturbed by non-linear
transformations

Notion of Instances

f10 (Ellipsoid) f15 (Rastrigin)

• 30 functions with various kinds of noise types and
strengths
• 3 noise types: Gaussian, uniform, and seldom Cauchy

• Functions with moderate noise

• Functions with severe noise

• Highly multi-modal functions with severe noise

• bbob functions included: Sphere, Rosenbrock, Step ellipsoid,
Ellipsoid, Different Powers, Schaffers' F7, Composite Griewank-
Rosenbrock

• 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

bbob-noisy Testbed

the recent extension to

multi-objective optimization

• 55 functions by combining 2 bbob functions

bbob-biobj Testbed (new in 2016)





















• 55 functions by combining 2 bbob functions

bbob-biobj Testbed (new in 2016)





















• 55 functions by combining 2 bbob functions

• 15 function groups with 3-4 functions each
• separable – separable, separable – moderate, separable - ill-

conditioned, ...

• 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

• instances derived from bbob instances:
• more or less 2i+1 for 1st objective and 2i+2 for 2nd objective

• exceptions: instances 1 and 2 and when optima are too close

• no normalization (algo has to cope with different orders of
magnitude)

• for performance assessment: ideal/nadir points known

bbob-biobj Testbed (new in 2016)

• Pareto set and Pareto front unknown
• but we have a good idea of where they are by running quite

some algorithms and keeping track of all non-dominated points
found so far

• Various types of shapes

bbob-biobj Testbed (cont'd)

Example: sphere with sphere

bbob-biobj Testbed (cont'd)

Example: sharp ridge with sharp ridge

bbob-biobj Testbed (cont'd)

Example: sphere with Gallagher 101 peaks

bbob-biobj Testbed (cont'd)

Example: Schaffer F7, cond. 10 with Gallagher 101 peaks

bbob-biobj Testbed (cont'd)

algorithm quality =

normalized* hypervolume (HV)

of all non-dominated solutions

if a point dominates nadir

closest normalized* negative distance

to region of interest [0,1]2

if no point dominates nadir

* such that ideal=[0,0] and nadir=[1,1]

Bi-objective Performance Assessment

We measure runtimes to reach (HV indicator) targets:

• relative to a reference set, given as the best Pareto front
approximation known (since exact Pareto set not known)
• for the workshop: before_workshop values

• from now on: updated current_best values incl. all non-
dominated points found by the 15 workshop algos:
will be available soon and hopefully fixed for some time

• actual absolute hypervolume targets used are

HV(refset) – targetprecision

with 58 fixed targetprecisions between 1 and -10-4 (same
for all functions, dimensions, and instances) in the displays

Bi-objective Performance Assessment

and now?

Enjoy the talks in this and the next two slots:

BBOB-2016

Session I

08:30 - 09:30 The BBOBies: Introduction to Blackbox Optimization Benchmarking

09:30 - 09:55 Tea Tušar*, Bogdan Filipič: Performance of the DEMO algorithm on the bi-objective BBOB test suite

09:55 - 10:20
Ilya Loshchilov, Tobias Glasmachers*: Anytime Bi-Objective Optimization with a Hybrid Multi-Objective

CMA-ES (HMO-CMA-ES)

Session II

10:40 - 10:55 The BBOBies: Session Introduction

10:55 - 11:20
Cheryl Wong*, Abdullah Al-Dujaili, and Suresh Sundaram: Hypervolume-based DIRECT for Multi-

Objective Optimisation

11:20 - 11:45
Abdullah Al-Dujaili* and Suresh Sundaram: A MATLAB Toolbox for Surrogate-Assisted Multi-Objective

Optimization: A Preliminary Study

11:45 - 12:10
Oswin Krause*, Tobias Glasmachers, Nikolaus Hansen, and Christian Igel: Unbounded Population MO-

CMA-ES for the Bi-Objective BBOB Test Suite

12:10 - 12:30 The BBOBies: Session Wrap-up

Session III

14:00 - 14:15 The BBOBies: Session Introduction

14:15 - 14:40
Kouhei Nishida* and Youhei Akimoto: Evaluating the Population Size Adaptation Mechanism for CMA-

ES

14:40 - 15:05 The BBOBies: Wrap-up of all BBOB-2016 Results

15:05 - 15:30 Thomas Weise*: optimizationBenchmarking.org: An Introduction

15:30 - 15:50 Open Discussion

http://coco.gforge.inria.fr/

by the way...

we are hiring!

at the moment:

1 engineer position for 1 year in Paris

+ potential PhD, postdoc, and internship positions

if you are interested, please talk to:

Anne Auger or Dimo Brockhoff

