# $6^{\text {th }}$ GECCO Workshop on Blackbox Optimization Benchmarking (BBOB): Welcome and Introduction to COCO/BBOB 

The BBOBies
https://github.com/numbbo/coco

slides based on previous ones by A. Auger, N. Hansen, and D. Brockhoff

challenging optimization problems appear in many
scientific, technological and industrial domains


## Numerical Blackbox Optimization

Optimize $f: \Omega \subset \mathbb{R}^{n} \mapsto \mathbb{R}^{k}$



## derivatives not available or not useful

## Practical Blackbox Optimization

## Given:



Not clear:
which of the many algorithms should I use on my problem?

## Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder \& Mead 1965]
Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]
Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)

- Differential Evolution [Storn \& Price 1997]
- Particle Swarm Optimization [Kennedy \& Eberhart 1995]
- Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen \& Ostermeier 2001]
- Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002]
- Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
- Gersetic Algoritirnors [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]
Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

## Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder \& Mead 1965]
Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]
Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)

- Differential Evolution [Storn \& Price 1997]
- Particle Swarm Optimization [Kennedy \& Eberhart 1995]
- Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen \& Ostermeier 2001]
- Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002]
- Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
- Genetic Algorithrrsis [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]
Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

- choice typically not immediately clear
- although practitioners have knowledge about which difficulties their problem has (e.g. multi-modality, nonseparability, ...)


## Need: Benchmarking

- understanding of algorithms
- algorithm selection
- putting algorithms to a standardized test
- simplify judgement
- simplify comparison
- regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

- choosing (and implementing) problems, performance measures, visualization, stat. tests, ...
- running a set of algorithms


## that's where COCO and BBOB come into play

Comparing Continuous Optimizers Platform

https://github .com/numbbo/coco

## automatized benchmarking

How to benchmark algorithms with COCO?

## https：／／github．com／numbbo／coco

numbbo／coco：Numerical ．．． $\square$
（6）
GitHub，Inc．（US）https：／／github．com／numbbo／coco
$C$
$C^{9}$ Searc


会 V
，会 © $\equiv$
（2）Most Visited Getting Started algorithms［COmparin．．．© numbbo／numbbo．Gi．．．


## https://github.com/numbbo/coco

Q numbbo/coco: Numerical ... $\square$

```
C
C
\({ }^{9}{ }^{\text {Search }}\)
```



- 会 © $\equiv$
\& - Github, Inc. (Us) https://github.com/numbbo/coco

numbbo / coco
© Unwatch • $10 \star$ Unstar
8 Fork 12

Numerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/ — Edit


## https://github.com/numbbo/coco

numbbo/coco: Numerical ... $\square$
A GitHub, Inc. (US) https://github.com/numbbo/coco

## $C$

${ }^{+}{ }_{\text {Searc }}$
 $\Delta$ v
, © $\equiv$
2.) Most Visited Getting Started algorithms [COmparin... © numbbo/numbbo . Gi...
numbbo / coco
© Unwatch - $10 \quad \star$ Unstar $9 \quad$ \& Fork 12

〈 Code
(I) Issues 111
${ }^{87}$ Pull requests 1
~ Pulse
.l. Graphs
Settings

Numerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/ — Edit


## https://github.com/numbbo/coco



## https://github.com/numbbo/coco


https：／／github．com／numbbo／coco

O）numbbo／coco：Numerical ．．．$\times$


| 28．nikohansen Merge | \＃720 from numbbo／development ．．． | Latest commit bcea0b2 5 days ago |
| :---: | :---: | :---: |
| D code－experiments | modified：code－experiments／build／python／cython／interface．c | 5 days ago |
| －code－postprocessing | Stop condition fixed． | 6 days ago |
| $\square$ docs | docs／coco－doc edit | 7 days ago |
| －howtos | Update release－howto．md | 20 days ago |
| 國 ．clang－format | raising an error in bbob2009＿logger．c when best＿value is NULL．Plus s．．． | a year ago |
| 目 ．hgignore | raising an error in bbob2009＿logger．c when best＿value is NULL．Plus s．．． | a year ago |
| 國 AUTHORS | minor | a month ago |
| 目 LICENSE | Create LICENSE | 2 months ago |
| 目 README．md | Update README．md | 10 days ago |
| 國 do．py | Added other paths to jdk on mac． | 6 days ago |
| 目 doxygen．ini | moved all files into code－experiments／folder besides the do．py scrip．．． | 4 months ago |

## numbbo／coco：Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform，now rewritten fully in ANSI c with other languages calling the c code．As the name suggests，the code provides a platform to benchmark and compare continuous optimizers，AKA non－linear solvers for numerical optimization．Languages currently available are
https：／／github．com／numbbo／coco
（f）numbbo／coco：Numerical ．．．


－GitHub，Inc．（US）https：／／github．com／numbbo／coco
$C$
$\mathrm{C}^{+}$Search

$\checkmark$
命
© $\equiv$
（2）Most Visited Getting Started algorithms［COmparin．．．© numbbo／numbbo－Gi．．．

| －howtos | Update release－howto．md |  |
| :---: | :---: | :---: |
| 目 clang－format | raising an error in bbob2009＿logger．c when best＿value is NULL．Plus s．．． |  |
| 首．hgignore | raising an error in bbob2009＿logger．c when best＿value is NULL．Plus s．．． |  |
| 目 AUTHORS | minor |  |
| 目 LICENSE | Create LICENSE | 2 |
| 目 README．md | Update README．md |  |
| 目 do．py | Added other paths to jdk on mac． |  |
| 目 doxygen．ini | moved all files into code－experiments／folder besides the do．py scrip．．． | 4 |
| 国 README．md |  |  |

This code reimplements the original Comparing Continous Optimizer platform，now rewritten fully in ANSI c with other languages calling the c code．As the name suggests，the code provides a platform to benchmark and compare continuous optimizers，AKA non－linear solvers for numerical optimization．Languages currently available are
－ $\mathrm{C} / \mathrm{C}_{++}$
－Java
－MATLAB／Octave
－Python
Contributions to link further languages（including a better example in $\mathrm{C}_{++}$）are more than welcome．

## https：／／github．com／numbbo／coco

（ numbbo／coco：Numerical ．．．

GitHub，Inc．（US）https：／／github．com／numbbo／coco


命 （9）

[^0]moved all files into code－experiments／folder besides the do．py scrip．
4 months ago

国 README．md

## numbbo／coco：Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform，now rewritten fully in ANSI c with other languages calling the c code．As the name suggests，the code provides a platform to benchmark and compare continuous
－C／C＋＋
－Java
－matlab／Octave
－Python
Commouris tommurner languages（including a better example in C＋＋）are more than welcome．
For more information，
－consult the BBOB workshops series，
－consider to register here for news，
－see the previous COCO home page here and
－see the links below to learn more about the ideas behind CoCO．

## Requirements

[^1]
## https：／／github．com／numbbo／coco

numbbo／coco：Numerical ．．．$\times$
（f）GitHub，Inc．（US）https：／／github．com／numbbo／coco

```
(2) Most Visited Getting Started algorithms [COmparin... () numbbo/numbbo - Gi...
```

1．Check out the Requirements above．
2．Download the COCO framework code from github，
－either by clicking here and unzip the zip file，
－or（preferred）by typing git clone https：／／github．com／numbbo／coco．git．This way allows to remain up－to－date easily（but needs git to be installed）．After cloning，git pull keeps the code up－to－date with the latest release．

CAVEAT：this code is still under heavy development．The record of official releases can be found here．The latest release corresponds to the master branch as linked above．

3．In a system shell，cd into the coco or coco－＜version＞folder（framework root），where the file do．py can be found． Type，i．e．execute，one of the following commands once

```
python do.py run-c
python do.py run-java
python do.py run-matlab
python do.py run-octave
python do.py run-python
```

depending on which language shall be used to run the experiments．run－＊will build the respective code and run the example experiment once．The build result and the example experiment code can be found under
code－experiments／build／＜language＞（＜language＞＝matlab for Octave）．python do．py lists all available commands．
4．On the computer where experiment data shall be post－processed，run

## https://github.com/numbbo/coco

(-) GitHub, Inc. (US) |https://github.com/numbbo/coco

## Getting Started

1. Check out the Requirements above.
2. Download the COCO framework code from github,

- either by clicking here and unzip the zip file,
- or (preferred) by typing git clone https://github.com/numbbo/coco.git. This way allows to remain up-to-date easily (but needs git to be installed). After cloning, git pull keeps the code up-to-date with the latest release

CAVEAT: this code is still under heavy development. The record of official releases can be found here. The latest release corresponds to the master branch as linked above.
3. In a system shell, cd into the coco or coco-<version> folder (framework root), where the file do.py can be found. Type, i.e. execute, one of the following commands once
python do.py run-c
nvthon do nv nun-iava
python do.py run-matlab
python do.py run-octave
python do.py run-python
depending on which language shall be used to run the experiments. run-* will build the respective code and run the example experiment once. The build result and the example experiment code can be found under
code-experiments/build/<language> (<language>=matlab for Octave). python do.py lists all available commands.
4. On the computer where experiment data shall be post-processed, run

## https：／／github．com／numbbo／coco

> （ numbbo／coco：Numerical ．．．$\times$
（－）GitHub，Inc．（US）｜https：／／github．com／numbbo／coco
$C$
${ }^{+}{ }^{+}$Search
今自
8 令
© $\equiv$
（P）Most Visited Getting Started algorithms［COmparin．．．numbbo／numbbo．Gi．．．
4．On the computer where experiment data shall be post－processed，run

```
python do.py install-postprocessing
```

to（user－locally）install the post－processing．From here on，do．py has done its job and is only needed again for updating the builds to a new release．

5．Copy the folder code－experiments／build／YOUR－FAVORITE－LANGUAGE and its content to another location．In Python it is sufficient to copy the file example＿experiment．py．Run the example experiment（it already is compiled，in case）．As the details vary，see the respective read－me＇s and／or example experiment files：
－c read me and example experiment
－Java read me and example experiment
－Matlab／Octave read me and example experiment
－Python read me and example experiment
If the example experiment runs，connect your favorite algorithm to Coco：replace the call to the random search optimizer in the example experiment file by a call to your algorithm（see above）．Update the output result＿folder ，the algorithm＿name and algorithm＿info of the observer options in the example experiment file．

Another entry point for your own experiments can be the code－experiments／examples folder．
6．Now you can run your favorite algorithm on the bbob－biobj（for multi－objective algorithms）or on the bbob suite（for single－objective algorithms）．Output is automatically generated in the specified data result＿folder

7．Postprocess the data from the results folder by typing

```
python -m bbob_pproc [-o OUTPUT_FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]
```


## https：／／github．com／numbbo／coco

$\square$
Q numbbo／coco：Numerical ．．．$\times$

C
${ }^{+}{ }^{\oplus}$ Search
田自
$\sqrt{ } \sqrt{ }$
令
© $\equiv$
（2）Most Visited Getting Started algorithms［COmparin．．．© numbbo／numbbo－Gi．．．
4．On the computer where experiment data shall be post－processed，run
python do．py install－postprocessing
to（user－locally）install the post－processing．From here on，do．py has done its job and is only needed again for updating the builds to a new release．

5．Copy the folder code－experiments／build／Your－FAVORITE－LANGUAGE and its content to another location．In Python it is sufficient to copy the file example＿experiment．py．Run the example experiment（it already is compiled，in case）．As the details vary，see the respective read－me＇s and／or example experiment files：
－c read me a d example experiment
－Java read me anu exampre expernнent
－Matlab／octave read me and example experiment
－Python read me and example experiment
If the example experiment runs，connect your favorite algorithm to Coco：replace the call to the random search optimizer in the example experiment file by a call to your algorithm（see above）．Update the output result＿folder，the algorithm＿name and algorithm＿info of the observer options in the example experiment file．

Another entry point for your own experiments can be the code－experiments／examples folder．
6．Now you can run your favorite algorithm on the bbob－biobj（for multi－objective algorithms）or on the bbob suite（for single－objective algorithms）．Output is automatically generated in the specified data result＿folder

7．Postprocess the data from the results folder by typing

```
python -m bbob_pproc [-o OUTPUT_FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]
```


## example_experiment.c


/* Iterate over all problems in the suite */
while ((PROBLFM = coco_suite_get_next_problem(suite, observer)) ! = NULL) \{

```
        size_t dimension = coco_problem_get_dimension(PROBLFM) ;
        /* Run the algorithm at least once */
        for (run = 1; run <= 1 + INDEPENDFNT_RESTARTS; run++) {
        size_t evaluations_done = coco_problem_get_evaluations(PROBLFM) ;
        long evaluations_remaining =
            (long) (dimension * BUDGET_MULTIPIIFR) - (long)evaluations_done;
```

        if (... || (evaluations_remaining <= 0))
            break;
        my_random_search (evaluate_function, dimension,
                coco_problem_get_number_of_objectives (PROBLEM) ,
                coco_problem_get_smallest_values_of_interest(PROBTMM) ,
                coco_problem_get_largest_values_of_interest (PROBIFM),
                (size_t) evaluations_remaining,
        random_generator) ;
    
## example_experiment.c


/* Iterate over all problems in the suite */
while ((PROBLFM = coco_suite_get_next_problem(suite, observer)) ! = NULL) \{

```
size_t dimension = coco_problem_get_dimension(PROBLFM) ;
/* Run the algorithm at least once */
for (run = 1; run <= 1 + INDEPENDENT_RESTARTS; run++) {
    size_t evaluations_done = coco_problem_get_evaluations(PROBLEM) ;
        long evaluations_remaining =
            (long)(dimension * BUDGFT_MULTIPIIFR) - (long) evaluations_done;
```

        if (... || (evaluations_remaining \(<=0\) ))
            break;
        my_random_search (evaluate_function, dimension,
        coco_priblem_get_number_of_objectives (PROBLEM),
            coco_problem_get_smallest_values_of_interest(PROBTMM) ,
            coco_problem_get_largest_values_of_interest (PROBIFM),
            (size_t) evaluations_remaining,
            random_generator) ;
    
# https://github.com/numbbo/coco 

$C$
${ }^{+}{ }^{+}$Search
合
$\downarrow$
令
© $\equiv$
(2) Most Visited Getting Started algorithms [COmparin... $Q$ numbbo/numbbo. Gi...

Another entry point for your own experiments can be the code-experiments/examples folder.
6. Now you can run your favorite algorithm on the bbob-biobj (for multi-objective algorithms) or on the bbob suite (for single-objective algorithms). Output is automatically generated in the specified data result_folder
7. Postprocess the data from the results folder by typing

```
python -m bbob_pproc [-o OUTPUT_FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]
```

The name bbob_pproc will become cocopp in future. Any subfolder in the folder arguments will be searched for logged data. That is, experiments from different batches can be in different folders collected under a single "root" yourdatafolder folder. We can also compare more than one algorithm by specifying several data result folders generated by different algorithms.

A folder, ppdata by default, will be generated, which contains all output from the post-processing, including a ppdata.html file, useful as main entry point to explore the result with a browser. Data might be overwritten, it is therefore useful to change the output folder name with the -o OUTPUT_FOLDERNAME option.

For the single-objective bbob suite, a summary pdf can be produced via LaTeX. The corresponding templates in ACM format can be found in the code-postprocessing/latex-templates folder. LaTeX templates for the multi-objective bbob-biobj suite will follow in a later release. A basic html output is also available in the result folder of the postprocessing (file templateBBOBarticle.html).
8. Once your algorithm runs well, increase the budget in your experiment script, if necessary implement randomized independent restarts, and follow the above steps successively until you are happy.

If you detect bugs or other issues, please let us know by opening an issue in our issue tracker at https://github.com/numbbo /coco/issues.

## result folder



## automatically generated results

© numbbo／coco：Numerical ．．．$\times$ Post processing results
file：／／／C：／Users／dimo／Desktop／numbbo－github／bbob－biobj－data／data／ppdata／ppdata．html
Q Search
合 自

令 © $\equiv$ （2）Most Visited Getting Started algorithms［COmparin．．．© numbbo／numbbo．Gi．．．

## Post processing results

## Single algorithm data

RS on bbob－biobj－3e4funevals

## automatically generated results



## automatically generated results

```
pprldmany
```

$\leftrightarrow \rightarrow$ (2) file:///C:/Users/dimo/Desktop/numbbo-github/bbob-biobj-data/data/ppdata/RS_on_bbob-biob.
(2) Most Visited Getting Started algorithms [COmparin... () numbbo/numbbo. Gi...

## [Other plots]

## Scaling of ERT with dimension




$\log 10$ of (\# f-evals / dimension)
log10 of (\# f-evals / dimension)






# doesn't look too complicated, does it? 

[the devil is in the details - ]

## so far (i.e. before 2016):

data for about 150 algorithm variants
118 workshop papers
by 79 authors from 25 countries

## Measuring Performance

On

- real world problems
- expensive
- comparison typically limited to certain domains
- experts have limited interest to publish
- "artificial" benchmark functions
- cheap
- controlled
- data acquisition is comparatively easy
- problem of representativeness


## Test Functions

- define the "scientific question"
the relevance can hardly be overestimated
- should represent "reality"
- are often too simple?
remind separability
- a number of testbeds are around
- account for invariance properties
prediction of performance is based on "similarity", ideally equivalence classes of functions


## Available Test Suites in COCO

- bbob
- bbob-noisy
- bbob-biobj

24 noiseless fcts
30 noisy fcts
55 bi-objective fcts

140+ algo data sets
40+ algo data sets

- new ~ in 2016

15 algo data sets

Under development:

- large-scale versions
- constrained test suite

Long-term goals:

- combining difficulties
- almost real-world problems
- real-world problems


## How Do We Measure Performance?

Meaningful quantitative measure

- quantitative on the ratio scale (highest possible)
"algo $A$ is two times better than algo $B$ " is a meaningful statement
- assume a wide range of values
- meaningful (interpretable) with regard to the real world
runtime or first hitting time is the prime candidate (we don't have many choices anyway)


## How Do We Measure Performance?

## Two objectives:

- Find solution with small(est possible) function/indicator value
- With the least possible search costs (number of function evaluations)

For measuring performance: fix one and measure the other

## Measuring Performance Empirically

 convergence graphs is all we have to start with...
number of function evaluations

## ECDF:

## Empirical Cumulative Distribution Function of the Runtime

 [aka data profile]
## A Convergence Graph .



## First Hitting Time is Monotonous



## 15 Runs



## 15 Runs $\leq 15$ Runtime Data Points



## Empirical Cumulative Distribution


the ECDF of run lengths to reach the target

- has for each data point a vertical step of constant size
- displays for each x-value (budget) the count of observations to the left (first hitting times)
e.g. $60 \%$ of the runs need between 2000 and 4000 evaluations $80 \%$ of the runs reached the target


## Reconstructing A Single Run



## Reconstructing A Single Run



50 equally
spaced targets

## Reconstructing A Single Run



## Reconstructing A Single Run



## Reconstructing A Single Run


the empirical CDF makes a step for each star, is monotonous and displays for each budget the fraction of targets achieved within the budget

## Reconstructing A Single Run


the ECDF recovers the monotonous graph, discretised and flipped

## Reconstructing A Single Run


the ECDF recovers the monotonous graph, discretised and flipped

## Aggregation



15 runs

## Aggregation



## 15 runs <br> 50 targets

## Aggregation



15 runs
50 targets

## Aggregation



15 runs
50 targets
ECDF with 750 steps

## Aggregation



50 targets from 15 runs
...integrated in a single graph

## Interpretation



50 targets from 15 runs integrated in a single graph
area over the ECDF

## curve

=
average log runtime
(or geometric avg. runtime) over all targets (difficult and easy) and all runs

## Fixed-target: Measuring Runtime



## Fixed-target: Measuring Runtime

- Algo Restart A:

$$
\mathrm{p}_{\mathrm{s}}(\text { Algo Restart } \mathrm{A})=1
$$

- Algo Restart B:



## Fixed-target: Measuring Runtime

- Expected running time of the restarted algorithm:

$$
E\left[R T^{r}\right]=\frac{1-p_{s}}{p_{s}} E\left[R T_{\text {unsuccessful }}\right]+E\left[R T_{\text {successful }}\right]
$$

- Estimator average running time (aRT):

$$
\widehat{p_{s}}=\frac{\# \text { successes }}{\# \text { runs }}
$$

$R \widehat{T_{\text {unsucc }}}=$ Average evals of unsuccessful runs
$R \widehat{R T_{\text {succ }}}=$ Average evals of successful runs

$$
a R T=\frac{\text { total \#evals }}{\# \text { successes }}
$$

## ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated restarted algorithms:


## Worth to Note: ECDFs in COCO

## In COCO, ECDF graphs

- never aggregate over dimension
- but often over targets and functions
- can show data of more than 1 algorithm at a time



## More Automated Plots...

## ...but no time to explain them here $*$




## More Automated Plots...

...but no time t




sep. Ellipsoid/Rosenbrock


## The single-objective BBOB functions

## bbob Testbed

- 24 functions in 5 groups:

- 6 dimensions: $2,3,5,10,20$, (40 optional)


## Notion of Instances

- All COCO problems come in form of instances
- e.g. as translated/rotated versions of the same function
- Prescribed instances typically change from year to year
- avoid overfitting
- 5 instances are always kept the same

Plus:

- the bbob functions are locally perturbed by non-linear transformations


## Notion of Instances



## bbob-noisy Testbed

- 30 functions with various kinds of noise types and strengths
- 3 noise types: Gaussian, uniform, and seldom Cauchy
- Functions with moderate noise
- Functions with severe noise
- Highly multi-modal functions with severe noise
- bbob functions included: Sphere, Rosenbrock, Step ellipsoid, Ellipsoid, Different Powers, Schaffers' F7, Composite GriewankRosenbrock
- 6 dimensions: 2, 3, 5, 10, 20, (40 optional)
the recent extension to multi-objective optimization


## bbob-biobj Testbed (new in 2016)

- 55 functions by combining 2 bbob functions


| 4 Multi-modal functions with adequate global structure |  |
| :---: | :---: |
| f15 | QRastrigin Function $\downarrow$ |
| f16 | (2)Weierstrass Function |
| $f 17$ | QSchaffers F7 Function $\checkmark$ |
| $f 18$ | QSchaffers F7 Functions, moderately ill-conditioned |
| $f 19$ | (1) Composite Griewank-Rosenbrock Function F8F2 |
| 5 Multi-modal functions with weak global structure |  |
| f20 | QSchwefel Function $\downarrow$ |
| f21 | QGallagher's Gaussian 101-me Peaks Function $\downarrow$ |
| f22 | (1)Gallagher's Gaussian 21-hi Peaks Function |
| f23 | ©Katsuura Function |
|  | (Lunacek bi-Rastrigin Function |

## bbob-biobj Testbed (new in 2016)

- 55 functions by combining 2 bbob functions

| 1 Separable Functions |  |  | 4 Multi-modal functions with adequate global structure |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| f1 QSphere Function $\checkmark$ |  |  | f15 QRastrigin Function $\downarrow$ |  |  |  |  |  |  |  |  |
| (1)Ellipsoidal Function <br> Rastrigin Function |  |  | f16 Weierstrass Function |  |  |  |  |  |  |  |  |
|  |  |  | f17 QSchaffers F7 Function $\downarrow$ |  |  |  |  |  |  |  |  |
| f4 Buuche-Rastrigin Function |  | $f_{1}$ | $f_{2}$ | $f_{6}$ | $f_{8}$ | $f_{13}$ | $f_{14}$ | $f_{15}$ | $f_{17}$ | $f_{20}$ | $f_{21}$ |
| f5 Linear Slope | $f_{1}$ | f1 | f2 | f3 | f4 | f5 | $\underline{\text { f6 }}$ | f7 | f8 | f9 | f10 |
| 2 Functions with low or moderate conditionir |  |  |  |  |  |  |  |  |  |  |  |
| f6 (Attractive Sector Function $\checkmark$ | $f_{2}$ |  | f11 |  | f13 | f14 | $\underline{\text { f1 }}$ | f16 | $\underline{\mathrm{f} 17}$ | f18 | f19 |
| f7 QStep Ellipsoidal Function | $f_{6}$ |  |  | f20 | $\underline{\text { f21 }}$ | $\underline{\text { f22 }}$ | f23 | f24 | f25 | f26 | $\underline{\mathrm{f} 27}$ |
| f8 (Rosenbrock Function, original $\checkmark$ | $f_{8}$ |  |  |  | f28 | f29 | f30 | f31 | f32 | f33 | f34 |
| f9 QRosenbrock Function, rotated | $f_{13}$ |  |  |  |  | f35 | f36 | f37 | f38 | f39 | f40 |
| 3 Functions with high conditioning and unimo | $f_{14}$ |  |  |  |  |  | f41 | $\underline{42}$ | $\underline{4} 4$ | $\underline{44}$ | $\underline{45}$ |
| f10 Ellipsoidal Function | $f_{15}$ |  |  |  |  |  |  | f46 | f47 | f48 | f49 |
| f11 (iscus Function | $f_{17}$ |  |  |  |  |  |  |  | f50 | f51 | f52 |
| f12 (2) Bent Cigar Function | $f_{20}$ |  |  |  |  |  |  |  |  | f53 | f54 |
| f13 (Sharp Ridge Function $\sqrt{ }$ | $f_{21}$ |  |  |  |  |  |  |  |  |  | $\underline{55}$ |
| f14 QDifferent Powers Function $\checkmark$ |  |  |  |  |  |  |  |  |  |  |  |

## bbob-biobj Testbed (new in 2016)

- 55 functions by combining 2 bbob functions
- 15 function groups with 3-4 functions each
- separable - separable, separable - moderate, separable - illconditioned, ...
- 6 dimensions: 2, 3, 5, 10, 20, (40 optional)
- instances derived from bbob instances:
- more or less $2 i+1$ for 1 st objective and $2 i+2$ for 2 nd objective
- exceptions: instances 1 and 2 and when optima are too close
- no normalization (algo has to cope with different orders of magnitude)
- for performance assessment: ideal/nadir points known


## bbob-biobj Testbed (cont'd)

- Pareto set and Pareto front unknown
- but we have a good idea of where they are by running quite some algorithms and keeping track of all non-dominated points found so far
- Various types of shapes


## bbob-biobj Testbed (cont'd)

## Example: sphere with sphere



## bbob-biobj Testbed (cont'd)

## Example: sharp ridge with sharp ridge



## bbob-biobj Testbed (cont'd)

## Example: sphere with Gallagher 101 peaks


bbob-biobj $f_{10}$ along linear search space directions (5-D, instance 1)


## bbob-biobj Testbed (cont'd)

## Example: Schaffer F7, cond. 10 with Gallagher 101 peaks




## Bi-objective Performance Assessment

algorithm quality =
normalized* hypervolume (HV) of all non-dominated solutions
if a point dominates nadir

closest normalized* negativen
to region of interest $[0,1]^{2}$
if no point dominates nadir

* such that ideal=[0,0] and nadir=[1,1]



## Bi-objective Performance Assessment

We measure runtimes to reach (HV indicator) targets:

- relative to a reference set, given as the best Pareto front approximation known (since exact Pareto set not known)
- for the workshop: before_workshop values
- from now on: updated current_best values incl. all nondominated points found by the 15 workshop algos: will be available soon and hopefully fixed for some time
- actual absolute hypervolume targets used are

HV(refset) - targetprecision
with 58 fixed targetprecisions between 1 and $-10^{-4}$ (same for all functions, dimensions, and instances) in the displays
and now?

## BBOB-2016

## Enjoy the talks in this and the next two slots:

| Session I |  |
| :---: | :---: |
| 08:30-09:30 | The BBOBies: Introduction to Blackbox Optimization Benchmarking |
| 09:30-09:55 | Tea Tušar*, Bogdan Filipič: Performance of the DEMO algorithm on the bi-objective BBOB test suite |
| 09:55-10:20 | Ilya Loshchilov, Tobias Glasmachers*: Anytime Bi-Objective Optimization with a Hybrid Multi-Objective CMA-ES (HMO-CMA-ES) |
| Session II |  |
| 10:40-10:55 | The BBOBies: Session Introduction |
| 10:55-11:20 | Cheryl Wong*, Abdullah AI-Dujaili, and Suresh Sundaram: Hypervolume-based DIRECT for MultiObjective Optimisation |
| 11:20-11:45 | Abdullah AI-Dujaili* and Suresh Sundaram: A MATLAB Toolbox for Surrogate-Assisted Multi-Objective Optimization: A Preliminary Study |
| 11:45-12:10 | Oswin Krause*, Tobias Glasmachers, Nikolaus Hansen, and Christian Igel: Unbounded Population MO-CMA-ES for the Bi-Objective BBOB Test Suite |
| 12:10-12:30 | The BBOBies: Session Wrap-up |
| Session III |  |
| 14:00-14:15 | The BBOBies: Session Introduction |
| 14:15-14:40 | Kouhei Nishida* and Youhei Akimoto: Evaluating the Population Size Adaptation Mechanism for CMAES |
| 14:40-15:05 | The BBOBies: Wrap-up of all BBOB-2016 Results |
| 15:05-15:30 | Thomas Weise*: optimizationBenchmarking.org: An Introduction |
| 15:30-15:50 | Open Discussion |

## http://coco.gforge.inria.fr/



COCO (COmparing Continuous Optimisers) is a platform for systematic and sound comparisons of real-parameter global optimisers. COCO provides benchmark function testbeds, experimentation templates which are easy to parallelize, and tools for processing and visualizing data generated by one or several optimizers. The COCO platform has been used for the Black-Box-OptimizationBenchmarking (BBOB) workshops that took place during the GECCO conference in 2009, 2010, 2012, 2013 and 2015. It was also used at the IEEE Congress on Evolutionary Computation (CEC'2015) in Sendai, Japan. The COCO source code is
 available at the downloads page.

- (1) Black-Box Optimization Benchmarking (BBOB) 2016
- Black-Box Optimization Benchmarking (BBOB) 2015
- CEC'2015 special session on Black-Box Optimization Benchmarking (CEC-BBOB 2013)
- Black-Box Optimization Benchmarking (BBOB) 2013
- Black-Box Optimization Benchmarking (BBOB) 2012
- Black-Box Optimization Benchmarking (BBOB) 2010
- Black-Box Optimization Benchmarking (BBOB) 2009
- Downloads and documentations

To subscribe to (or unsubscribe from) the bbob discussion mailing list follow this link (2) http://lists.Iri.fr /cgi-bin/mailman/listinfo/bbob-discuss .

Navigation

- Home
- Documentation
- download latest old code
- (2new code homepage
- download new code directly
- (1) BBOB 2016
- BBOB 2015 @ GECCO
- Algorithms
- Results
- Schedule
- Downloads
- BBOB 2015 @ CEC
- Algorithms
- Results
- Downloads
- BBOB 2013
- Algorithms
- Results
- Schedule
- Downloads
- BBOB 2012
- Algorithms
- Results
- Downloads
- BBOB 2010
- Results
- Downloads


## by the way...

## we are hiring!

at the moment:
1 engineer position for 1 year in Paris

+ potential PhD, postdoc, and internship positions
if you are interested, please talk to:
Anne Auger or Dimo Brockhoff


[^0]:    （2）Most Visited Getting Started algorithms［COmparin．．．numbbo／numbbo ．Gi．．．

[^1]:    1．For a machine running experiments

