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0 Introduction

This document is based on the BBOB 2009 noisy function document [2]. In the following the
benchmark functions with noise are described. For a general motivation of the choice of functions
please refer to [1].

0.1 Symbols and Definitions

Used symbols and definitions of, e.g., auxiliary functions are given in the following. Vectors are
typeset in bold and refer to column vectors.

⊗ indicates element-wise multiplication of twoD-dimensional vectors, ⊗ : RD×RD → RD, (x,y) 7→
diag(x)× y = (xi × yi)i=1,...,D

‖.‖ denotes the Euclidean norm, ‖x‖2 =
∑
i x

2
i .

[.] denotes the nearest integer value

0 = (0, . . . , 0)T all zero vector

1 = (1, . . . , 1)T all one vector

Λα is a diagonal matrix in D dimensions with the ith diagonal element as λii = α
1
2

i−1
D−1

fpen : RD → R, x 7→ 100
∑D
i=1 max(0, |xi| − 5)2

1+
− a D-dimensional vector with entries of −1 or 1 both drawn equal probability.

Q, R orthogonal (rotation) matrices. For each function instance in each dimension a single re-
alization for respectively Q and R is used. Rotation matrices are generated from standard
normally distributed entries by Gram-Schmidt orthogonalization. Columns and rows of a
rotation matrix form an orthogonal basis.

R see Q

T βasy : RD → RD, xi 7→

{
x

1+β i−1
D−1

√
xi

i if xi > 0

xi otherwise
, for i = 1, . . . , D.

Tosz : Rn → Rn, for any positive integer n, maps element-wise

x 7→ sign(x) exp (x̂+ 0.049 (sin(c1x̂) + sin(c2x̂)))

with x̂ =

{
log(|x|) if x 6= 0

∈ R otherwise
, sign(x) =


−1 if x < 0

0 if x = 0

1 otherwise

, c1 =

{
10 if x > 0

5.5 otherwise
and

c2 =

{
7.9 if x > 0

3.1 otherwise

xopt optimal solution vector, such that f(xopt) is minimal.

0.2 General Setup

Search Space All functions are defined and can be evaluated over RD, while the actual search
domain is given as [−5, 5]D.
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Figure 1: Tosz (blue) and D-th coordinate of Tasy for β = 0.1, 0.2, 0.5 (green)

Location of the optimal xopt and of fopt = f(xopt) All functions have their global optimum
in [−5, 5]D. The majority of functions has the global optimum in [−4, 4]D. The value for fopt is
drawn from a cauchy distributed random variable, with roughly 50% of the values between -100
and 100. The value is rounded after two decimal places and the maximum and minimum are set
to 1000 and −1000 respectively. In the function definitions a transformed variable vector z is often
used instead of the argument x. The vector z has its optimum in zopt = 0, if not stated otherwise.

Boundary Handling On all functions a penalty boundary handling is applied as given with
fpen (see section 0.1).

Linear Transformations Linear transformations of the search space are applied to derive non-
separable functions from separable ones and to control the conditioning of the function.

Non-Linear Transformations and Symmetry Breaking In order to make relatively simple,
but well understood functions less regular, on some functions non-linear transformations are ap-
plied in x- or f -space. Both transformations Tosz : Rn → Rn, n ∈ {1, D}, and Tasy : RD → RD are
defined coordinate-wise (see Section 0.1). They are smooth and have, coordinate-wise, a strictly
positive derivative. They are shown in Figure 1. Tosz is oscillating about the identity, where the
oscillation is scale invariant w.r.t. the origin. Tasy is the identity for negative values. When Tasy

is applied, a portion of 1/2D of the search space remains untransformed.

0.3 Noise Models

In this benchmarking suite three different noise models are used. The first two, fGN () and fUN (),
are multiplicative noise models while the third model, fCN (), is an additive noise model. All noise
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models are applied to a function value f under the assumption that f ≥ 0. All noise models reveal
stochastic dominance between any two solutions and are therefore utility-free (see Appendix A).

Gaussian Noise The Gaussian noise model is scale invariant and defined as

fGN (f, β) = f × exp(βN (0, 1)) . (1)

The noise strength is controlled with β. The distribution of the noise is log-normal, thus no
negative noise values can be sampled. For the benchmark functions with moderate noise β = 0.01,
otherwise β = 1. For small values of β this noise model resembles f × (1 + βN (0, 1)).

Uniform Noise The uniform noise model is introduced as a more severe noise model than the
Gaussian and is defined as

fUN (f, α, β) = f × U(0, 1)β max

(
1,

(
109

f + ε

)αU(0,1)
)

. (2)

The noise model uses two random factors. The first factor is in the interval [0, 1], uniformly
distributed for β = 1. The second factor, max(. . . ), is ≥ 1. The parameters α and β control the
noise strength. For moderate noise α = 0.01 (0.49 + 1/D) and β = 0.01, otherwise α = 0.49+1/D
and β = 1. Furthermore, ε is set to 10−99 in order to prevent division by zero.

The uniform noise model is not scale invariant. Due to the last factor in Eq. (2) the noise
strength increases with decreasing (positive) value of f . Therefore the noise strength becomes
more severe when approaching the optimum.

Cauchy Noise The Cauchy noise model represents a different type of noise with two important
aspects. First, only a comparatively small percentage of function values is disturbed by noise.
Second, the noise distribution is comparatively “weird”. Large outliers occur once in a while, and
because they stem from a continuous distribution they cannot be easily diagnosed. The Cauchy
noise model is defined as

fCN (f, α, p) = f + α max

(
0, 1000 + I{U(0,1)<p}

N (0, 1)

|N (0, 1)|+ ε

)
, (3)

where α defines the noise strength and p determines the frequency of the noise disturbance. In the
moderate noise case α = 0.01 and p = 0.05, otherwise α = 1 and p = 0.2. The summand of 1000
was chosen to sample positive and negative “outliers” (as the function value is cut from below,
see next paragraph) and ε is set to 10−199.

Final Function Value In order to achieve a convenient testing for the target function value, in
all noise models 1.01× 10−8 is added to the function value and, if the input argument f is smaller
than 10−8, the undisturbed f is returned.

fXX(f, . . . )←

{
fXX(f, . . . ) + 1.01× 10−8 if f ≥ 10−8

f otherwise
(4)

0.4 Figures

The benchmark function definitions in the next section are accompanied with a number of figures.

1. a (3-D) surface plot, where D = 2

2. a contour plot, where D = 2

3. two projected contour plots, where D = 20. Plotted are, starting from the optimum xopt,
first versus second variable (left) and first versus fifth variable (right).
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4. sections (f versus x) through the global optimum along the first variable x1, the second
variable x2, and the all-ones vector. The sections for different dimensions appear

(a) in a non-log plot (above), where the maximum f -value is normalized to one for each
single graph.

(b) in a semi-log plot (middle row)

(c) in a log-log plot (below) starting close to the global optimum along x1, −x1, x2, −x2,
1, and −1.
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1 Functions with moderate noise

1.1 Sphere

fsphere(x) = ‖z‖2

• z = x− xopt

Properties Presumably the most easy continuous domain search problem, given the volume of
the searched solution is small (i.e. where pure monte-carlo random search is too expensive).

• unimodal

• highly symmetric, in particular rotationally invariant

1.1.1 101 Sphere with moderate gaussian noise

f101(x) = fGN (fsphere(x), 0.01) + fpen(x) + fopt (101)
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1.1.2 102 Sphere with moderate uniform noise

f102(x) = fUN

(
fsphere(x), 0.01

(
0.49 +

1

D

)
, 0.01

)
+ fpen(x) + fopt (102)
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1.1.3 103 Sphere with moderate seldom cauchy noise

f103(x) = fCN (fsphere(x), 0.01, 0.05) + fpen(x) + fopt (103)
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1.2 Rosenbrock

frosenbrock(x) =

D−1∑
i=1

100
(
z2
i − zi+1

)2
+ (zi − 1)2

• z = max
(

1,
√
D
8

)
(x− xopt) + 1

• zopt = 1

Properties So-called banana function due to its 2-D contour lines as a bent ridge (or valley).
In the beginning, the prominent first term of the function definition attracts to the point z = 0.
Then, a long bending valley needs to be followed to reach the global optimum. The ridge changes
its orientation D − 1 times.

• in larger dimensions the function has a local optimum with an attraction volume of about
25%

1.2.1 104 Rosenbrock with moderate gaussian noise

f104(x) = fGN (frosenbrock(x), 0.01) + fpen(x) + fopt (104)
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1.2.2 105 Rosenbrock with moderate uniform noise

f105(x) = fUN

(
frosenbrock(x), 0.01

(
0.49 +

1

D

)
, 0.01

)
+ fpen(x) + fopt (105)
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1.2.3 106 Rosenbrock with moderate seldom cauchy noise

f106(x) = fCN (frosenbrock(x), 0.01, 0.05) + fpen(x) + fopt (106)
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2 Functions with severe noise

2.1 Sphere

fsphere(x) = ‖z‖2

• z = x− xopt

Properties Presumably the most easy continuous domain search problem, given the volume of
the searched solution is small (i.e. where pure monte-carlo random search is too expensive).

• unimodal

• highly symmetric, in particular rotationally invariant

2.1.1 107 Sphere with gaussian noise

f107(x) = fGN (fsphere(x), 1) + fpen(x) + fopt (107)
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2.1.2 108 Sphere with uniform noise

f108(x) = fUN

(
fsphere(x), 0.49 +

1

D
, 1

)
+ fpen(x) + fopt (108)
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2.1.3 109 Sphere with seldom cauchy noise

f109(x) = fCN (fsphere(x), 1, 0.2) + fpen(x) + fopt (109)
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2.2 Rosenbrock

frosenbrock(x) =

D−1∑
i=1

100
(
z2
i − zi+1

)2
+ (zi − 1)2

• z = max
(

1,
√
D
8

)
(x− xopt) + 1

• zopt = 1

Properties So-called banana function due to its 2-D contour lines as a bent ridge (or valley).
In the beginning, the prominent first term of the function definition attracts to the point z = 0.
Then, a long bending valley needs to be followed to reach the global optimum. The ridge changes
its orientation D − 1 times.

• a local optimum with an attraction volume of about 25%

2.2.1 110 Rosenbrock with gaussian noise

f110(x) = fGN (frosenbrock(x), 1) + fpen(x) + fopt (110)
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2.2.2 111 Rosenbrock with uniform noise

f111(x) = fUN

(
frosenbrock(x), 0.49 +

1

D
, 1

)
+ fpen(x) + fopt (111)

58



59



60



61



62



2.2.3 112 Rosenbrock with seldom cauchy noise

f112(x) = fCN (frosenbrock(x), 1, 0.2) + fpen(x) + fopt (112)
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2.3 Step ellipsoid

fstep(x) = 0.1 max

(
|ẑ1|/104,

D∑
i=1

102 i−1
D−1 z2

i

)

• ẑ = Λ10R(x− xopt)

• z̃i =

{
b0.5 + ẑic if ẑi > 0.5

b0.5 + 10 ẑic/10 otherwise
for i = 1, . . . , D,

denotes the rounding procedure in order to produce the plateaus.

• z = Qz̃

Properties The function consists of many plateaus of different sizes. Apart from a small area
close to the global optimum, the gradient is zero almost everywhere.

• condition number is about 100

2.3.1 113 Step ellipsoid with gaussian noise

f113(x) = fGN (fstep(x), 1) + fpen(x) + fopt (113)
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2.3.2 114 Step ellipsoid with uniform noise

f114(x) = fUN

(
fstep(x), 0.49 +

1

D
, 1

)
+ fpen(x) + fopt (114)
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2.3.3 115 Step ellipsoid with seldom cauchy noise

f115(x) = fCN (fstep(x), 1, 0.2) + fpen(x) + fopt (115)
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2.4 Ellipsoid

fellipsoid(x) =

D∑
i=1

104 i−1
D−1 z2

i

• z = Tosz(R(x− xopt))

Properties Globally quadratic ill-conditioned function with smooth local irregularities.

• condition number is 104

2.4.1 116 Ellipsoid with gaussian noise

f116(x) = fGN (fellipsoid(x), 1) + fpen(x) + fopt (116)
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2.4.2 117 Ellipsoid with uniform noise

f117(x) = fUN

(
fellipsoid(x), 0.49 +

1

D
, 1

)
+ fpen(x) + fopt (117)
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2.4.3 118 Ellipsoid with seldom cauchy noise

f118(x) = fCN (fellipsoid(x), 1, 0.2) + fpen(x) + fopt (118)
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2.5 Different Powers

fdiffpowers(x) =

√√√√ D∑
i=1

|zi|2+4 i−1
D−1

• z = R(x− xopt)

Properties Due to the different exponents the sensitivies of the zi-variables become more and
more different when approaching the optimum.

2.5.1 119 Different Powers with gaussian noise

f119(x) = fGN (fdiffpowers(x), 1) + fpen(x) + fopt (119)
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2.5.2 120 Different Powers with uniform noise

f120(x) = fUN

(
fdiffpowers(x), 0.49 +

1

D
, 1

)
+ fpen(x) + fopt (120)

102
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2.5.3 121 Different Powers with seldom cauchy noise

f121(x) = fCN (fdiffpowers(x), 1, 0.2) + fpen(x) + fopt (121)
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3 Highly multi-modal functions with severe noise

3.1 Schaffer’s F7

fschaffer(x) =

(
1

D − 1

D−1∑
i=1

√
si +

√
si sin2

(
50 s

1/5
i

))2

• z = Λ10QT 0.5
asy(R(x− xopt))

• si =
√
z2
i + z2

i+1 for i = 1, . . . , D

Properties A highly multimodal function where frequency and amplitude of the modulation
vary.

• conditioning is low

3.1.1 122 Schaffer’s F7 with gaussian noise

f122(x) = fGN (fschaffer(x), 1) + fpen(x) + fopt (122)

110
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3.1.2 123 Schaffer’s F7 with uniform noise

f123(x) = fUN

(
fschaffer(x), 0.49 +

1

D
, 1

)
+ fpen(x) + fopt (123)

115
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117
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3.1.3 124 Schaffer’s F7 with seldom cauchy noise

f124(x) = fCN (fschaffer(x), 1, 0.2) + fpen(x) + fopt (124)
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3.2 Composite Griewank-Rosenbrock

ff8f2(x) =
1

D − 1

D−1∑
i=1

( si
4000

− cos(si)
)

+ 1

• z = max
(

1,
√
D
8

)
Rx + 0.5

• si = 100 (z2
i − zi+1)2 + (zi − 1)2 for i = 1, . . . , D

• zopt = 1

Properties Resembling the Rosenbrock function in a highly multimodal way.

3.2.1 125 Composite Griewank-Rosenbrock with gaussian noise

f125(x) = fGN (ff8f2(x), 1) + fpen(x) + fopt (125)
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3.2.2 126 Composite Griewank-Rosenbrock with uniform noise

f126(x) = fUN

(
ff8f2(x), 0.49 +

1

D
, 1

)
+ fpen(x) + fopt (126)
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3.2.3 127 Composite Griewank-Rosenbrock with seldom cauchy noise

f127(x) = fCN (ff8f2(x), 1, 0.2) + fpen(x) + fopt (127)
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3.3 Gallagher’s Gaussian Peaks, globally rotated

fgallagher(x) = Tosz

(
10− 101

max
i=1

wi exp

(
− 1

2D
(x− yi)

TRTCiR(x− yi)

))2

• wi =

1.1 + 8× i− 2

99
for i = 2, . . . , 101

10 for i = 1
, three optima have a value larger than 9

• Ci = Λαi/α
1/4
i where Λαi is defined as usual (see Section 0.1), but with randomly per-

muted diagonal elements. For i = 2, . . . , 101, αi is drawn uniformly randomly from the set{
10002 j

99 | j = 0, . . . , 99
}

without replacement, and αi = 1000 for i = 1.

• the local optima yi are uniformly drawn from the domain [−4.9, 4.9]D for i = 2, . . . , 101 and
y1 ∈ [−4, 4]D. The global optimum is at xopt = y1.

Properties The function consists of 101 optima with position and height being unrelated and
randomly chosen.

• condition number around the global optimum is about 30

• same overall rotation matrix

3.3.1 128 Gallagher’s Gaussian Peaks 101-me with gaussian noise

f128(x) = fGN (fgallagher(x), 1) + fpen(x) + fopt (128)
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3.3.2 129 Gallagher’s Gaussian Peaks 101-me with uniform noise

f129(x) = fUN

(
fgallagher(x), 0.49 +

1

D
, 1

)
+ fpen(x) + fopt (129)
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3.3.3 130 Gallagher’s Gaussian Peaks 101-me with seldom cauchy noise

f130(x) = fCN (fgallagher(x), 1, 0.2) + fpen(x) + fopt (130)
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APPENDIX

A Utility Functions

The objective when optimizing a noisy function is not immediately obvious. Function values are
noisy by definition and the ordering of solutions is not unique, but depends on the realized random
values. For this reason, often a utility is defined, which is a deterministic function over the search
space. Let F : RD → R be the noisy function, i.e. for each x ∈ RD, F (x) is a random variable
with values in R. Then a utility maps each F (x) to a real value and therefore, equivalently maps
each x to this value. A typical utility is x 7→ E(F (x)), where E denotes the expected value (the
expectation is taken over F (x) for a single given x). The objective can now be stated in that the
utility shall be minimized. Most search procedures, like evolutionary algorithms, do not optimize
for the expected value. Therefore, evaluating their performance with respect to E(F (x)) could
render benchmarking result rather meaningless.

In the given testbed, we have chosen to implement utility-free noisy functions. We call
them utility-free, because any utility that is compliant with the minimization task will eventually
lead to the same result: the ordering between solutions will remain the same for all compliant
utility functions and in particular the global optimum will be the same. This property is provided
by stochastic dominance between the F -distributions of any two solutions, x and y. For the
cumulative distribution functions P of F (x) and F (y) holds either for all z ∈ R is PF (x)(z) <
PF (y)(z),

1 or for all z ∈ R is PF (x)(z) > PF (y)(z), or F (x) and F (y) have the same distribution.
Some compliant utility functions are given.

• x 7→ E(F (x)), the expected value of F (x).

• x 7→ E(g(F (x))), for any stricly increasing g : R → R, is a generalization of the previous
case.

• any distribution percentile of F (x).

• let Pp(F (x)) be the p%-percentile of the distribution of F (x), then
∫ 100

p=0
w(p)Pp(F (x)) is

another possible utility, for any non-trivial w : p 7→ w(p) ≥ 0. When w is dirac, the previous
case is recovered.

The advantage of a utility-free testbed is that any minimization algorithm, independent of its
explicitely or implicitely build-in utility, can be reasonably evaluated.

1PF (x)(z) denotes the probability that F (x) ≤ z.
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