
The bbob-constrained COCO Test Suite

This document briefly describes the bbob-constrained test suite implemented in the COCO software [4, 5] and provides
some example code.1 To cite this work, please refer to the following paper:

Paul Dufossé, Nikolaus Hansen, Dimo Brockhoff, Phillipe R. Sampaio, Asma Atamna, and Anne Auger.
Building scalable test problems for benchmarking constrained optimizers. 2022. To be submitted to the
SIAM Journal of Optimization
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Table of the Functions in bbob-constrained

Number of constraints 1 3 9 9 + b3n/4c 9 + b3n/2c 9 + b9n/2c

Number of active constraints 1 2 6 6 + bn/2c 6 + n 6 + 3n

Objective T cscal Function IDs

fsphere id 10 1 2 3 4 5 6
fellipsoid Tosz 10−4 7 8 9 10 11 12
flinear id 10 13 14 15 16 17 18
felli_rot Tosz 10−4 19 20 21 22 23 24
fdiscus Tosz 10−4 25 26 27 28 29 30
fbent_cigar T 0.5

asy 10−4 31 32 33 34 35 36
fdiff_powers id 10−2 37 38 39 40 41 42
frastrigin T 0.2

asy ◦Tosz 10 43 44 45 46 47 48
frast_rot T 0.2

asy ◦Tosz 10 49 50 51 52 53 54

Table 1: Identifiers of the bbob-constrained problems, where T is a non-linear search space transformations (described
in Non-linear transformations) applied with each objective and id(x) = x . The 2-D contour plots of the first instance
of each test problem can be found in the Appendix or by clicking the objective function name. Contour plots of
other instances in 2-D are given at this link.

Functions Definitions
The bbob-constrained test suite uses several COCO “raw” functions as previously used in the unconstrained settings.
The functions are defined in Table 2.

1To know more about the COCO software, go to the GitHub page.
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Function name Formulation Transformations
Sphere fsphere(x) = z>z + fuopt z = x − xuopt

Separable ellipsoid fellipsoid(x) =
n∑
i=1

106 i−1
n−1 z2

i + fuopt z = x − xuopt

Linear slope flinear(x) =
n∑
i=1

5|si | − sizi + fuopt

si = sign(xuopt
i )10

i−1
n−1

zi =

{
xi if xuopt

i xi < 52

xuopt
i otherwise

for i = 1, . . . ,n

Rotated ellipsoid felli_rot(x) =
n∑
i=1

106 i−1
n−1 z2

i + fuopt z = R(x − xuopt)

Discus fdiscus(x) = 106z2
1 +

n∑
i=2

z2
i + fuopt z = R(x − xuopt)

Bent cigar fbent_cigar(x) = z2
1 + 10

6
n∑
i=2

z2
i + fuopt z = R(x − xuopt)

Different powers fdiff_powers(x) =

√√
106

n∑
i=1

|zi |
2+4 i−1

n−1 + fuopt z = R(x − xuopt)

Rastrigin frastrigin(x) = 10

(
n −

n∑
i=1

cos(2πzi )

)
+ z>z + fuopt z = x − xuopt

Rotated Rastrigin frast_rot(x) = 10

(
n −

n∑
i=1

cos(2πzi )

)
+ z>z + fuopt z = R(x − xuopt)

Table 2: COCO raw function definitions and search space transformations (applied before T from Table 1), where
xuopt ∈ Rn is a randomly sampled vector locating the unconstrained minimum of the objective function such that
f (xuopt) = fuopt ∈ R. Rotations R ∈ Rn×n are randomly sampled orthogonal matrices, fixed for each instance.

Running an Experiment
A Python code example how to benchmark a solver on the COCO constrained test suite is given in Listing 1. Running
a full experiment requires, among other things, to attach an observer to the current problem, allow a sufficiently
large budget (number of objective and constraints evaluations) and loop over all problems of the test suite.

import cocoex , cocopp
from scipy.optimize import fmin_cobyla as fmin
import os, webbrowser # to open post -processed results in the browser

def get_constraints(problem):
""" return the constraint function from ‘problem ‘"""
def constraint(x):

""" constraints for ‘fmin_cobyla ‘ where >= 0 means feasible """
return -problem.constraint(x)

return constraint # a function

suite = cocoex.Suite(’bbob -constrained ’, ’’, ’’)
observer = cocoex.Observer(’bbob -constrained ’, ’result_folder: ’ + fmin.__name__)
for problem in suite: # this for -loop takes a minute or two

problem.observe_with(observer)
fmin(problem , problem.initial_solution , get_constraints(problem),

rhobeg=2, rhoend =1e-8, maxfun =1e2) # next step: increase maxfun to 1e3...

cocopp.main(observer.result_folder) # post -processing the data , takes two minutes
webbrowser.open("file ://" + os.getcwd () + "/ppdata/index.html") # browse results

Listing 1: Benchmarking SciPy’s COBYLA on the bbob-constrained test suite (running the code requires the
installation of cocoex and cocopp from the COCO repository). Click here to get the above shown code listing.
For a more comprehensive code example for running a full experiment in practice, optionally in batches, see
example_experiment2.py.
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The interface yields a feasible starting point x init as problem.initial_solution. If the experimental design includes
restarts, further feasible starting points can be sampled from x init following the procedure described in Algorithm 1.

Algorithm 1 Sampling a new feasible starting point
Require: x init and σ > 0
1: while True do
2: Sample z ∼ N(0, id) and set x = x init + σz
3: if x is feasible then
4: return x as the new starting point
5: else
6: σ ← σ/2

General Problem Definition
A constrained test problem is written in the standard form

minimize
x ∈X

f (x) subject to дk (x) ≤ 0 for k = 1, . . . ,m (1)

where X may be [−5, 5]n or Rn , n is the dimension of the search space and m is the number of generally non-linear
constraints.

To create the constrained problems, each one of the 9 objective functions is composed with a non-linear transformation
of the search space defined previously and is combined withm′ ∈ {1, 2, 6, 6+ bn/2c, 6+n, 6+3n} active constraints and
bm′/2c inactive constraints, having overall m = b3m′/2c constraints. This results in 54 constrained test problems, fi ,
i = 1, . . . , 54, summarized in Table 1. In practice, xopt is sampled randomly to define different instances of the same
constrained problem. Additionally, the objective functions are scaled down by a factor cscal > 0 which is specific to
each function. The final optimization problem writes:

minimize
x ∈X

cscal f (v) subject to дi (v) ≤ 0 for i = 1, . . . ,m (2)

where v = T (x − xopt) and T is the non-linear transformation reported in Table 1 along with cscal and the number of
constraints associated to each problem. The considered dimensions are the same as for the bbob test suite, that is
n ∈ {2, 3, 5, 10, 20, 40}.

Principles of the Construction
The theory allows to control the location of the constrained optimum y? ∈ Rn , provided that its gradient is non-zero.
In the construction, f is an already shifted BBOB function, hence taking y? = 0 generally provides ∇f (y?) , 0 (in
some cases, e.g. the Rastrigin function, some additional conditions on y? are needed [2]). From this point, following
the gradient direction, an initial solution is determined

x init = y? + ρ∇f (y?) + xopt (3)

where xopt ∈ X defines another (random) translation such that the global minimum of the constrained problem is
not in y? = 0 and ρ > 0 is a scaling factor ensuring that x init ∈ X.

Performance Assessment
In order to assess the performance of optimization algorithms, we record the number of objective and constraint
evaluations to reach a certain target value.

The target definition encompasses objective minimization and constraint satisfaction together using the merit function

f̃ (x) := max(fopt, f (x)) +
m∑
k=0

max(0,дk (x)) , (4)

where fopt = f (xopt). It is easy to see that min f̃ = fopt.
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The estimated Expected Runtime (ERT) [3] is computed from feasible points only and for 7 target values ftarget =

fopt + 10
i , with i ∈ {1, 0,−1,−2,−3,−5,−6}.

Data points for the ECDFS [3] are collected for 41 target values ftarget = fopt + 10i , with i evenly distributed in
[−6, 2].
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Supplementary Material

Construction of the feasible region
The construction of any problem of the test suite is detailed in the full paper [2] and relies on Theorem 4.2.16 in [1, p.
195] stating that, if f is pseudo-convex at y?, and дk is differentiable and quasi-convex at y? for all k = 1, . . . ,m, then
the KKT conditions are sufficient to ensure that y? is a global minimum of the constrained optimization problem.
It is easy to show that, if f is strictly pseudo-convex at y?, then the global minimum is also unique [2]. We refer to
the textbook of Bazaraa et al. [1] for the definitions and properties of pseudo- and quasi-convexity.

The algorithm to generate an instance of a constrained problem first builds a set of m linear constraints, of the form
дk (x) = αka

>
k (x − y

?) + bk by setting ak ∈ R
n where αk > 0,bk ≥ 0 ∈ R are input parameters. The first constraint is

chosen such that a1 = −α1∇f (y
?)/‖∇f (y?)‖ and b1 = 0 hence д1(y

?) = 0. If m = 1, this is the only choice to satisfy
the stationarity condition in the KKT equations. The remaining constraints are randomly sampled from an isotropic
multivariate normal distribution. If дk (y? + ρ∇f (y?)) > 0, the sign of ak is flipped to make sure that y? + ρ∇f (y?) is
feasible. A constraint is inactive at the constructed optimum if bk > 0.

The Lagrange multipliers associated to y? when the constraints are generated according to the aforementioned pro-
cedure are [1, 0, . . . , 0] ∈ Rm . A second step of the algorithm modifies the set of constraints gradients in a randomized
manner such that the first constraint is not any more aligned with the gradient direction at the optimum. The
constraints’ indices are also shuffled.

Non-linear transformations
Let T : Rn → Rn be a bijective transformation of the search space with inverse T −1. Then T −1(y?) is the global
optimum of the problem

minimize
x ∈X

f (T (x)) subject to дi (T (x)) ≤ 0 i = 1, . . . ,m (5)

if y? is the global optimum of the original problem as described in Equation (1). This allows to apply non-linear
transformations of the search space to the set of constructed linear constraints. For practical reasons, we consider in
this work bijective transformations T that have y? as fixed point, i.e. T (y?) = y?. As a consequence, the optimum
of the transformed problem in Equation (5) remains y?. This way, we avoid computing the inverse transformation
at y?. The non-linear transformations implemented in the test suite are coordinate-wise, defined as T β

asy, where β > 0,
and Tosz, defined as follows:

T
β
asy(x) =

({
x

1+β i−1
n−1
√
xi

i if xi > 0

xi otherwise

)
i=1, ...,n

, (6)

Tosz(x) =
(
sign(xi ) exp(x̂i + 0.049(sin(c1x̂i ) + sin(c2x̂i )))

)
i=1, ...,n , (7)

with x̂i = log(|xi |)11{xi,0} and sign(xi ) is the sign function with convention sign(0) = 0. The value for the constants

c1 and c2 are c1 =

{
10 if xi > 0

5.5 otherwise
, and c2 =

{
7.9 if xi > 0

3.1 otherwise
. The idea is that T β

asy introduces asymmetry,

as it only changes positive coordinates, and Tosz : Rn → Rn oscillates around the origin. Both transformations are
bijective, continuous, sign-preserving hence have fixed point 0.
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Rastrigin
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Rotated Rastrigin
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